
Secure Communication with TLS

BRUCE MOMJIAN

TLS/SSL forms the backbone of secure digital communication. This presentation explains

how it works for websites and Postgres.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: June 2025

1 / 78

Outline

1. Why you should care

2. Secure digital protocol

3. Authentication

4. Browser certificate usage

5. Postgres certificate usage

6. Conclusion

2 / 78

1. Why You Should Care

• Interactions are increasingly digital

• Attackers are increasingly distant

• Attackers are increasingly sophisticated

• New threats prompt new security requirements

• Security software must be regularly updated to be effective

This presentation shows only modern security practices.

3 / 78

What Cryptography Can Accomplish

Authenticity Verify who is on the other end of the communication channel

Confidentiality Only the other party can read the original messages

Integrity No other party can change or add messages

Other features are often desired, e.g., non-repudiation.

4 / 78

This Talk Is Not Enough

Of course, secure digital communication is just one aspect of security. If done properly, attacks
will happen somewhere else:

• Protocol attacks
• Trojan horses
• Viruses
• Electromagnetic monitoring (TEMPEST)
• Physical compromise
• Blackmail/intimidation of key holders
• Operating system bugs
• Application program bugs
• Hardware bugs
• User error
• Physical eavesdropping
• Social engineering
• Dumpster diving

(List from Applied Cryptography, Bruce Schneier, 1996) For an entertaining video about
hardware exploits that bypass encryption, see Crypto Won’t Save You Either, https://youtu.be/
_ahcUuNO4so.

5 / 78

https://youtu.be/_ahcUuNO4so
https://youtu.be/_ahcUuNO4so

2. Secure Digital Protocol

A secure digital protocol needs a way to

• Negotiate a secret session key in public, e.g., ECDHE

• Encrypt/decrypt a block of data using a key, e.g., AES256

• Encrypt/decrypt a variable-length message, e.g., GCM

• Verify the message was generated by someone who knows the key, e.g., GCM

• Identify that the other party is authentic, e.g., RSA

• Verify someone is not in the middle viewing, modifying, or adding messages, e.g.,

RSA

This is not a protocol that does one thing — it must do multiple things, and with

resourceful and persistent attackers intermixed at all levels of the protocol.

6 / 78

TLS/SSL Protocol

• SSL (Secure Socket Layers) developed by Netscape in 1995

• TLS (Transport Layer Security) approved by the IETF (Internet Engineering Task

Force) in 1999

• IETF deprecated SSL 2.0 in 2011 and SSL 3.0 (the last version) in 2015 due to

discovered vulnerabilities

• TLS 1.3 is the most recent version, released in August, 2018

TLS protocol details and its interaction with certificates, key exchange, and attacks are
covered in https://security.stackexchange.com/questions/20803/
how-does-ssl-tls-work. A video about the protocol message exchange is available at
https://www.youtube.com/watch?v=25_ftpJ-2ME.

7 / 78

https://security.stackexchange.com/questions/20803/how-does-ssl-tls-work
https://security.stackexchange.com/questions/20803/how-does-ssl-tls-work
https://www.youtube.com/watch?v=25_ftpJ-2ME

What Not To Do

• Do not encrypt the message using RSA

• too slow to encrypt
• messages can expose parts of the secret key

• Do not encrypt the secret key using RSA

• post-session exposure of a persistent RSA private key would expose the message, i.e.,
does not allow forward secrecy

• too slow to generate per-session RSA key pairs

8 / 78

Application of Cryptographic Methods

• Use ephemeral Diffie–Hellman (DHE or ECDHE) to negotiate a secret session key

• Use RSA for user authentication (more on this in the next section)
• Server RSA-signs a hash of the current DHE or ECDHE exchange (e.g. gy mod p) to:

• proves identity (knowledge of the certificate’s RSA private key)
• prevents a man-in-the-middle from altering the server’s DHE or ECDHE parameters

• Client sends its DHE part (e.g., gx mod p), optionally signed (authenticated) by a client
certificate

• Session tickets allow the reuse of parameters from recent sessions

• TLS 1.3 requires DHE or ECDHE key negotiation, e.g., passing the key via RSA

encryption is no longer be supported

9 / 78

Pieces of the Puzzle

• ECDHE for secret key exchange

• RSA for authenticating users and the secret key

• AES for confidentiality

• GCM and SHA for integrity of encrypted blocks

10 / 78

Modern TLS Connection

$ openssl s_client -connect momjian.us:443
…
New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384

message

authentication

code (MAC)

hash type

cipher

mode

method

symmetric

cipher

protocol

cipher key

length

generated using OpenSSL 1.1.1k 25 Mar 2021

11 / 78

Cryptographic Standards Are Evolving

• Some browsers do not prefer the strongest encryption settings, e.g., Firefox 96 and Chrome
97 prefer AES128 over AES256

• Check your browser’s preferred ciphers: https://www.ssllabs.com/ssltest/viewMyClient.
html

12 / 78

https://www.ssllabs.com/ssltest/viewMyClient.html
https://www.ssllabs.com/ssltest/viewMyClient.html

Firefox Defaults for momjian.us

13 / 78

Chrome Defaults for momjian.us

14 / 78

Elliptic Curves Are the Future

The following rows have comparable security:

——— Bits ——— Bit Ratio Computational

Symmetric Cipher Elliptic Curve RSA & DHE Cols 2 & 3 Ratio

80 160 1024 6 262

112 224 2048 9 84

128 256 3072 12 1728

192 384 7680 20 8000

256 512 15360 29 25625

https://www.globalsign.com/en/blog/elliptic-curve-cryptography/

For columns two and three, doubling the bit count increases computations by 8x (cubic).
The chart’s asymmetry is caused by non-brute-force attacks against linear finite-field algorithms with
complexity less than O(

√
n) (e.g., index calculus) which do not apply to elliptic curves. Simplistically, this is

because, in linear finite fields, it is easy to find valid integers, while for elliptic curves it is difficult to find
valid points (x,y); for ideas see https://crypto.stackexchange.com/questions/8301/
trying-to-better-understand-the-failure-of-the-index-calculus-for-ecdlp .

15 / 78

https://www.globalsign.com/en/blog/elliptic-curve-cryptography/
https://crypto.stackexchange.com/questions/8301/trying-to-better-understand-the-failure-of-the-index-calculus-for-ecdlp
https://crypto.stackexchange.com/questions/8301/trying-to-better-understand-the-failure-of-the-index-calculus-for-ecdlp

Postgres TLS Introspection

$ psql "sslmode=require host=momjian.us dbname=postgres"
psql (14.1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)
Type "help" for help.

postgres=> CREATE EXTENSION sslinfo;

postgres=> SELECT ssl_is_used(), ssl_version(), ssl_cipher();
ssl_is_used | ssl_version | ssl_cipher
-------------+-------------+------------------------
t | TLSv1.3 | TLS_AES_256_GCM_SHA384

sslinfo also includes functions to query client certificates.

16 / 78

Postgres Fanciness

SELECT type, mode
FROM unnest(string_to_array(ssl_cipher(), ’_’),

’{protocol, symmetric cipher method, cipher key length, cipher mode,
MAC hash type}’::text[])

AS f(type, mode);
type | mode

--------+-------------------------
TLS | protocol
AES | symmetric cipher method
256 | cipher key length
GCM | cipher mode
SHA384 | MAC hash type

17 / 78

3. Authentication

https://www.flickr.com/photos/93243105@N0/

18 / 78

3.1 Certificates Creation: Their Purpose

So far, Diffie–Hellman (DHE and ECDHE) allow negotiation of a secret key in public, but

who are you negotiating with?

• Is there someone impersonating your intended participant?

• Is there someone between you and your intended participant, passing through all
the messages but:

• viewing them?
• modifying them?
• creating fake messages?

While the two parties could establish a secret privately that could be used later to prove

identity, the more common method is to create an X.509 certificate, which is

information RSA-signed by someone that both parties trust (a certificate authority).

19 / 78

X.509 Certificate Creation

Create an X.509 certificate that is signed by a trusted root certificate authority:

• Create a certificate signing request (CSR) by answering some questions that uniquely

identify your website

• A public and private RSA key pair will also be generated

• Email the CSR (which includes the public RSA key) to a publicly-trusted certificate

authority

• Receive an X.509 certificate that is RSA-signed by a trusted entity

• Install the trusted certificate in the web server

https://momjian.us/main/blogs/pgblog/2017.html#January_12_2017

20 / 78

https://momjian.us/main/blogs/pgblog/2017.html#January_12_2017

The RSA Key and Its Signed CSR

Key

PrivatePublic

Key

Server Key

Key

Public
Certificate

Signing

Information

Server Signature

Certificate Signing Request

21 / 78

Generating a Certificate Signing Request (CSR)

$ openssl req -new -nodes -newkey rsa:2048 \
-keyout momjian.us.key -out momjian.us.csr

Generating a 2048 bit RSA private key
...+++
......................................+++
writing new private key to ’momjian.us.key’
…fill in prompts
Country Name (2 letter code) [AU]:
…
$ ls
momjian.us.csr momjian.us.key
$ openssl req -in momjian.us.csr -noout -text
Certificate Request:

…
Subject: C=US, ST=Pennsylvania, L=Newtown Square, O=Bruce Momjian, OU=website, \

CN=momjian.us/emailAddress=bruce@momjian.us

22 / 78

The Full CSR

$ openssl req -in momjian.us.csr -noout -text
Certificate Request:

Data:
Version: 0 (0x0)
Subject: C=US, ST=Pennsylvania, L=Newtown Square, O=Bruce Momjian, OU=website, \

CN=momjian.us/emailAddress=bruce@momjian.us
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:cb:33:cf:07:bf:5a:61:08:47:50:d4:6f:18:d3:
…
82:a8:11:cb:e2:a1:1a:7d:cf:92:e4:43:59:6a:d3:
25:65

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: sha256WithRSAEncryption

12:b1:21:09:b4:b4:3e:fe:2b:9f:ce:96:cd:98:17:80:d0:83:…
23 / 78

The CSR-Generated RSA Key Pair

$ openssl rsa -in momjian.us.key -text -noout
Private-Key: (2048 bit)
modulus:

00:cb:33:cf:07:bf:5a:61:08:47:50:d4:6f:18:d3:…
publicExponent: 65537 (0x10001)

privateExponent:
00:a0:6c:7a:9a:47:3b:f7:37:2d:f6:66:80:7f:3d:…

prime1:
00:ff:e9:0a:97:00:2b:36:ca:dc:35:b5:f5:18:e5:…

prime2:
00:cb:46:09:ea:00:8b:20:36:e6:69:45:e1:e2:c7:…

exponent1:
1c:65:57:6f:79:ed:51:9f:20:e0:34:d8:85:72:bd:…

exponent2:
59:50:c0:f2:6c:a2:b4:d8:ea:8c:bf:03:ed:9d:53:…

coefficient:
32:ee:3b:ef:87:e4:f3:e4:ba:2e:7d:0d:51:ab:97:…

24 / 78

RSA Key Pair Internals

$ rsadump.sh momjian.us.key
key bits = 2047.6
n (pq) = 2565…
e = 65537

d (1/e mod lcm(p-1,q-1)) = 2025…
p = 1797…
q = 1427…

exp1 (dp, d mod (p-1)) = 1994…
exp2 (dq, d mod (q-1)) = 6271…
c (qinv, 1/q mod p) = 3576…
…

The final three fields are used to speed computations involving the private key. Script available at https://
momjian.us/main/writings/pgsql/rsadump.sh, derived from http://www.vidarholen.net/contents/junk/files/

decode_rsa.bash.

25 / 78

https://momjian.us/main/writings/pgsql/rsadump.sh
https://momjian.us/main/writings/pgsql/rsadump.sh
http://www.vidarholen.net/contents/junk/files/decode_rsa.bash
http://www.vidarholen.net/contents/junk/files/decode_rsa.bash

RSA Key Pair Internals

$ rsadump.sh -e momjian.us.key
key bits = 2047.6
n (pq) ˜= 2e616
e = 65537

d (1/e mod lcm(p-1,q-1)) ˜= 2e616
p ˜= 1e308
q ˜= 1e308

exp1 (dp, d mod (p-1)) ˜= 1e307
exp2 (dq, d mod (q-1)) ˜= 6e307
c (qinv, 1/q mod p) ˜= 3e307
…

26 / 78

RSA and X.509 Files

Key contains the public and private keys

Pub contains the public key

Csr contains the public key and data to be signed

Crt contains the public key and data and the signature of a certificate authority

27 / 78

TLS/SSL Acronyms

ASN1 Abstract syntax notation used to represent a hierarchical data structure

DER Binary representation of an ASN1 structure, used by openssl and other

TLS/SSL tools

PEM Base64 encoding of DER data, with dashed armor before and after; typical

file extensions: pem, key, pub, csr, crt, crl

PEM describes the storage format, not the contents, i.e., a PEM file can contain a

public/private key pair, public key, certificate request, signed certificate (one or many (a

chain)), or certificate revocation list.

28 / 78

Prove the CSR Was Signed by the RSA Private Key

• Study the ASN1 structure of the CSR

• Find the hash method, e.g., SHA256

• Hash the ASN1 section containing the user-supplied parameters

• Extract the signed stored hash in the CSR

• Use the RSA public key to reverse the signature to produce the stored hash

• Compare the computed hash with the stored hash

29 / 78

The ASN1 CSR Structure

$ oopenssl req -in momjian.us.csr -outform DER | openssl asn1parse -i -inform DER
…
0:d=0 hl=4 l= 739 cons: SEQUENCE
4:d=1 hl=4 l= 459 cons: SEQUENCE
8:d=2 hl=2 l= 1 prim: INTEGER :00
11:d=2 hl=3 l= 157 cons: SEQUENCE

…
117:d=3 hl=2 l= 19 cons: SET
119:d=4 hl=2 l= 17 cons: SEQUENCE
121:d=5 hl=2 l= 3 prim: OBJECT :commonName
126:d=5 hl=2 l= 10 prim: UTF8STRING :momjian.us
…
171:d=2 hl=4 l= 290 cons: SEQUENCE
175:d=3 hl=2 l= 13 cons: SEQUENCE
177:d=4 hl=2 l= 9 prim: OBJECT :rsaEncryption
188:d=4 hl=2 l= 0 prim: NULL
190:d=3 hl=4 l= 271 prim: BIT STRING
465:d=2 hl=2 l= 0 cons: cont [0]
467:d=1 hl=2 l= 13 cons: SEQUENCE
469:d=2 hl=2 l= 9 prim: OBJECT :sha256WithRSAEncryption
480:d=2 hl=2 l= 0 prim: NULL
482:d=1 hl=4 l= 257 prim: BIT STRING

30 / 78

Hash the User-Supplied-Parameter Section

$ # openssl asn1parse can’t process text before
$ # the PEM armor so convert it to DER first.
$ openssl req -in momjian.us.csr -outform DER |
> openssl asn1parse -i -inform DER -strparse 4 -out /dev/stdout -noout |
> openssl dgst -sha256 -binary |
> xxd -plain -cols 999
f405afa2d4b242ecb320071f37ba2e00b249b7fd05f91db7bc35882380e2c25e

31 / 78

Reverse the Signed Hash

$ openssl req -in momjian.us.csr -outform DER |
> openssl asn1parse -i -inform DER -strparse 482 -out /dev/stdout -noout |
> openssl pkeyutl -verifyrecover -inkey momjian.us.key |
> openssl asn1parse -i -inform DER

0:d=0 hl=2 l= 49 cons: SEQUENCE
2:d=1 hl=2 l= 13 cons: SEQUENCE
4:d=2 hl=2 l= 9 prim: OBJECT :sha256
15:d=2 hl=2 l= 0 prim: NULL
17:d=1 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]: \

F405AFA2D4B242ECB320071F37BA2E00B249B7FD05F91DB7BC35882380E2C25E

32 / 78

Extract the Reverse Signed Hash and Compare

$ openssl req -in momjian.us.csr -outform DER |
> openssl asn1parse -i -inform DER -strparse 482 -out /dev/stdout -noout |
> openssl pkeyutl -verifyrecover -inkey momjian.us.key |
> openssl asn1parse -i -inform DER -strparse 17 -out /dev/stdout -noout |
> xxd -plain -cols 999
f405afa2d4b242ecb320071f37ba2e00b249b7fd05f91db7bc35882380e2c25e

$ # The hash we computed earlier on the user-supplied params
$ openssl req -in momjian.us.csr -outform DER |
> openssl asn1parse -i -inform DER -strparse 4 -out /dev/stdout -noout |
> openssl dgst -sha256 -binary |
> xxd -plain -cols 999
f405afa2d4b242ecb320071f37ba2e00b249b7fd05f91db7bc35882380e2c25e

$ openssl req -in momjian.us.csr -verify -key momjian.us.key -noout
verify OK

33 / 78

Website Certificate (Signed CSR)

$ openssl x509 -in momjian.us.pem -text -noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

23:30:40:e9:4c:3e:b1:63:4e:15:2b:1a:e2:00:a1:01
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=US, O=GeoTrust Inc., CN=RapidSSL SHA256 CA
Validity

Not Before: Mar 3 00:00:00 2016 GMT
Not After : May 2 23:59:59 2018 GMT

Subject: CN=momjian.us
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

…

34 / 78

3.2 Certificate Verification: Manually Verify Each Certificate Link

$ openssl x509 -in momjian.us.pem -subject -issuer -noout
subject= /CN=momjian.us
issuer= /C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA

$ openssl x509 -in RapidSSL_SHA256_CA.pem -subject -issuer -noout
subject= /C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA
issuer= /C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

$ openssl x509 -in /etc/ssl/certs/GeoTrust_Global_CA.pem -subject -issuer -noout
subject= /C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

issuer= /C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

35 / 78

Verify the Certificate Chain to the Root CA

$ # momjian.us.pem needs two certificates to reach the root CA
$ # so we concatenate them together. -CApath /dev/null prevents
$ # the local certificate store from being used.
$ cat /etc/ssl/certs/GeoTrust_Global_CA.pem RapidSSL_SHA256_CA.pem |
> openssl verify -CApath /dev/null -CAfile /dev/stdin momjian.us.pem
momjian.us.pem: OK

$ openssl verify -CApath /dev/null -CAfile \
/etc/ssl/certs/GeoTrust_Global_CA.pem RapidSSL_SHA256_CA.pem

RapidSSL_SHA256_CA.pem: OK

$ openssl verify -CApath /dev/null -CAfile \
/etc/ssl/certs/GeoTrust_Global_CA.pem \
/etc/ssl/certs/GeoTrust_Global_CA.pem

/etc/ssl/certs/GeoTrust_Global_CA.pem: OK

36 / 78

Experimenting With Verification

$ # Certificate order doesn’t matter in this case.
$ cat RapidSSL_SHA256_CA.pem /etc/ssl/certs/GeoTrust_Global_CA.pem |
> openssl verify -CApath /dev/null -CAfile /dev/stdin momjian.us.pem
momjian.us.pem: OK

$ # momjian.us can’t verify itself
$ openssl verify -CApath /dev/null -CAfile momjian.us.pem momjian.us.pem
momjian.us.pem: CN = momjian.us
error 20 at 0 depth lookup:unable to get local issuer certificate

$ # error and success with a root certificate
$ openssl verify -CApath /dev/null /etc/ssl/certs/GeoTrust_Global_CA.pem
/etc/ssl/certs/GeoTrust_Global_CA.pem: C = US, O = GeoTrust Inc., \
CN = GeoTrust Global CA
error 18 at 0 depth lookup:self signed certificate

OK

37 / 78

Rules of Certificate Verification, Part 1

These rules apply to public and private CA verification:

• Receive the first remote certificate; assume the remote server has its private key

• Receive any additional remote certificates

• these should be intermediate certificates that create a chain toward a root certificate
• traverse up the chain as far as possible

• find a certificate whose subject name matches the current certificate issuer’s subject name,

e.g., if the certificate issuer is “RapidSSL SHA256 CA”, find a certificate with that subject
name

• verify that the issuer’s public key can decrypt the current certificate’s signature and
matches the hash of the certificate body

• continue until no more matches or a root certificate is found

38 / 78

Rules of Certificate Verification, Part 2

• Using the top-most certificate found, look in the local certificate store for similar matches

• if a root certificate was already received, check that is also exists in the local certificate store
• if not, using the previous instructions, continue until a local-certificate-store root certificate is

found, or fail

For more details, see the “Verify Operation” section of the verify manual page.

39 / 78

Installing Certificates in Apache 2.4

• Place the signed server/leaf certificate in a new file

• Append any intermediate certificates that should be sent to the client to help the

traverse to a locally-stored root certificate, in reverse-signing order (for

compatibility)

• You can place the new file in any directory accessible by Apache, or in

/etc/ssl/certs (or where specified by the Apache SSLCACertificatePath
directive)

• Record the file path in /etc/apache2/sites-enabled/000-default-ssl.conf
using the SSLCertificateFile directive

40 / 78

Introspecting a Certificate Bundle

It is possible to show all the certificates in a certificate bundle:

$ # There is no value in including the root certificate
$ # because it must exist on the remote side for success.
$ cat RapidSSL_SHA256_CA.pem momjian.us.pem > /etc/ssl/certs/momjian.us.bundle.pem

$ openssl crl2pkcs7 -nocrl -certfile momjian.us.bundle.pem |
> openssl pkcs7 -print_certs -text -noout | grep ’Subject:’

Subject: CN=momjian.us
Subject: C=US, O=GeoTrust Inc., CN=RapidSSL SHA256 CA

41 / 78

3.3 Certificate Authority Creation

To create a local root certificate authority and a chain underneath it

• Create a certificate signed by its own key pair (the root CA)

• Create an intermediate CA whose certificate is signed by the root CA’s private key

• Create a server certificate signed by the intermediate CA

Details about certificate creation and management can be found at https://jamielinux.
com/docs/openssl-certificate-authority/introduction.html.

https://momjian.us/main/blogs/pgblog/2018.html#January_22_2018

42 / 78

https://jamielinux.com/docs/openssl-certificate-authority/introduction.html
https://jamielinux.com/docs/openssl-certificate-authority/introduction.html
https://momjian.us/main/blogs/pgblog/2018.html#January_22_2018

Root CA, Intermediate CA, and Server Certificate

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Public

Intermediate CACertificate

Signing

Information

Intermediate CA Signature

Certificate Signing Request

Root CA Signature

Intermediate CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Intermediate CA Signature

Server Certificate

sign

sign verify

verify

43 / 78

Create the Root CA

$ openssl req -new -nodes -subj "/CN=CA-root" -text -keyout CA-root.key > CA-root.csr

$ # v3_ca enables a group of settings from the openssl config file;
$ # specifically, it sets the certificate’s basic constraint of
$ # CA to true. -extfile points to the config file
$ openssl x509 -req -in CA-root.csr -text -days 3650 \

-extfile /etc/ssl/openssl.cnf -extensions v3_ca \
-signkey CA-root.key > CA-root.crt

44 / 78

Certificate Marked as a CA

$ openssl x509 -in CA-root.crt -text -noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

9e:40:f6:e3:7c:e8:94:ec
Signature Algorithm: sha256WithRSAEncryption

Issuer: CN=CA-root
…

X509v3 Basic Constraints:
CA:TRUE

45 / 78

Create the Intermediate CA

$ openssl req -new -nodes -subj "/CN=CA-intermediate" -text \
-keyout CA-intermediate.key > CA-intermediate.csr

$ openssl x509 -req -in CA-intermediate.csr -text -days 1825 \
-extfile /etc/ssl/openssl.cnf -extensions v3_ca \
-CA CA-root.crt -CAkey CA-root.key -CAcreateserial \
> CA-intermediate.crt

46 / 78

CA Signing the CSR

Key

PrivatePublic

Key

Server Key

Key

PrivatePublic

Key

Certificate Authority Key

Key

Public
Certificate

Signing

Information

Server Signature

Certificate Signing Request

Key

Public
Certificate

Signing

Information

Server Signature

Certificate Signing Request

Certificate Authority Signature

Certificate

47 / 78

Proving the Certificate Signature

$ # Get offsets of user-supplied parameter section
$ openssl x509 -in CA-intermediate.crt -outform DER | openssl asn1parse -i -inform DER

0:d=0 hl=4 l= 767 cons: SEQUENCE
4:d=1 hl=4 l= 487 cons: SEQUENCE
…
39:d=2 hl=2 l= 18 cons: SEQUENCE
41:d=3 hl=2 l= 16 cons: SET
43:d=4 hl=2 l= 14 cons: SEQUENCE
45:d=5 hl=2 l= 3 prim: OBJECT :commonName
50:d=5 hl=2 l= 7 prim: UTF8STRING :CA-root
…
91:d=2 hl=2 l= 26 cons: SEQUENCE
93:d=3 hl=2 l= 24 cons: SET
95:d=4 hl=2 l= 22 cons: SEQUENCE
97:d=5 hl=2 l= 3 prim: OBJECT :commonName

102:d=5 hl=2 l= 15 prim: UTF8STRING :CA-intermediate
…
495:d=1 hl=2 l= 13 cons: SEQUENCE
497:d=2 hl=2 l= 9 prim: OBJECT :sha256WithRSAEncryption
508:d=2 hl=2 l= 0 prim: NULL
510:d=1 hl=4 l= 257 prim: BIT STRING

48 / 78

Hash the User-Supplied-Parameter Section

$ openssl x509 -in CA-intermediate.crt -outform DER |
> openssl asn1parse -i -inform DER -strparse 4 -out /dev/stdout -noout |
> openssl dgst -sha256 -binary |
> xxd -plain -cols 999
9b7a02bdaff1412c5843b812255cbd023b1c6f6ae1ac3b93cd3d5fd001e0bc21

49 / 78

Reverse the Signed Hash

$ openssl x509 -in CA-intermediate.crt -outform DER |
> openssl asn1parse -i -inform DER -strparse 510 -out /dev/stdout -noout |
> openssl pkeyutl -verifyrecover -inkey CA-root.key |
> openssl asn1parse -i -inform DER

0:d=0 hl=2 l= 49 cons: SEQUENCE
2:d=1 hl=2 l= 13 cons: SEQUENCE
4:d=2 hl=2 l= 9 prim: OBJECT :sha256
15:d=2 hl=2 l= 0 prim: NULL
17:d=1 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]: \

9B7A02BDAFF1412C5843B812255CBD023B1C6F6AE1AC3B93CD3D5FD001E0BC21

50 / 78

Extract the Reverse Signed Hash and Compare

$ openssl x509 -in CA-intermediate.crt -outform DER |
> openssl asn1parse -i -inform DER -strparse 510 -out /dev/stdout -noout |
> openssl pkeyutl -verifyrecover -inkey CA-root.key |
> openssl asn1parse -i -inform DER -strparse 17 -out /dev/stdout -noout |
> xxd -plain -cols 999
9b7a02bdaff1412c5843b812255cbd023b1c6f6ae1ac3b93cd3d5fd001e0bc21

$ # The hash we computed earlier on the user-supplied params
$ openssl x509 -in CA-intermediate.crt -outform DER |
> openssl asn1parse -i -inform DER -strparse 4 -out /dev/stdout -noout |
> openssl dgst -sha256 -binary |
> xxd -plain -cols 999
9b7a02bdaff1412c5843b812255cbd023b1c6f6ae1ac3b93cd3d5fd001e0bc21

$ openssl verify -CAfile CA-root.crt CA-intermediate.crt
CA-intermediate.crt: OK

51 / 78

Create a Server/Leaf Certificate

$ openssl req -new -nodes -subj "/CN=$(hostname)" -text -keyout server.key > server.csr

$ # This is an leaf so don’t use the "v3_ca" extension.
$ openssl x509 -req -in server.csr -text -days 913 \

-CA CA-intermediate.crt -CAkey CA-intermediate.key \
-CAcreateserial > server.crt

52 / 78

3.4 Certificate Hierarchies: Our Simplistic Configuration

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Public

Intermediate CACertificate

Signing

Information

Intermediate CA Signature

Certificate Signing Request

Root CA Signature

Intermediate CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Intermediate CA Signature

Server Certificate

sign

sign verify

verify

53 / 78

Root Signs Server and Client Certificates

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Root CA Signature

Server Certificate

Key

Client

Public

Certificate

Signing

Information

Client Signature

Certificate Signing Request

Root CA Signature

Client Certificate

54 / 78

Intermediate Signs Server and Client Certificates

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Intermediate CA

Public

Certificate

Signing

Information

Intermediate CA Signature

Certificate Signing Request

Root CA Signature

Intermediate CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Intermediate CA Signature

Server Certificate

Key

Client

Public

Certificate

Signing

Information

Client Signature

Certificate Signing Request

Intermediate CA Signature

Client Certificate

55 / 78

Intermediate Signs Client

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Client

Public

Certificate

Signing

Information

Client Signature

Certificate Signing Request

Intermediate CA Signature

Client Certificate

Key

Intermediate CA

Public

Certificate

Signing

Information

Intermediate CA Signature

Certificate Signing Request

Root CA Signature

Intermediate CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Root CA Signature

Server Certificate

56 / 78

Separate Server/Client Intermediates

Key

Root CA

Public

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

Server

Public

Certificate

Signing

Information

Server Signature

Certificate Signing Request

Intermediate1 CA Signature

Server Certificate

Key

Client

Public

Certificate

Signing

Information

Client Signature

Certificate Signing Request

Intermediate2 CA Signature

Client Certificate

Key

Intermediate1 CA

Public

Certificate

Signing

Information

Intermediate1 CA Signature

Certificate Signing Request

Root CA Signature

Intermediate1 CA Certificate

Key

Intermediate2 CA

Public

Certificate

Signing

Information

Intermediate2 CA Signature

Certificate Signing Request

Root CA Signature

Intermediate2 CA Certificate

57 / 78

3.5 Certificate Tips with Your Own Root CA

• Create a root certificate (root CA) signed by its own password-protected key pair

• Create an intermediate CA whose certificate is signed by the root CA’s private key

• Transfer the root CA’s private key to offline storage

• Use the intermediate certificate to sign leaf certificates

• Append the intermediate certificate when sending the leaf certificate

• Use the root certificate when validating remote certificates

• Because remotes verify using only a root certificate, intermediate and leaf

certificates can be replaced incrementally

• For more details see https://github.com/ssllabs/research/wiki/
SSL-and-TLS-Deployment-Best-Practices

58 / 78

https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

3.6 Certificate Revocation List (CRL)

A certificate revocation list (CRL) records non-expired certificates that should no longer

be trusted due to

• Unauthorized exposure of a certificate’s private key (certificates are public)

• Device containing the certificate’s private key was or is not under trusted control

• Departure of staff that had access to the certificate’s private key

While not required for initial security, it is best to configure CRL files and their

distribution method during certificate installation (even if the CRLs are empty) so they

are ready when needed.

https://momjian.us/main/blogs/pgblog/2018.html#August_27_2018

59 / 78

https://momjian.us/main/blogs/pgblog/2018.html#August_27_2018

3.7 TLS Use of Certificates

The two parties communicating via TLS generate a shared secret key, usually via

Diffie–Hellman. The certificate owner proves they are on the other end of the TLS

connection by signing the shared secret using the private key matching the certificate’s

public key.

While both parties contribute to the shared secret, neither side fully controls the result.

This prevents a man in the middle from impersonating the certificate owner by creating

a new TLS connection with an identical shared secret and resending the signed shared

secret it received from the real certificate owner.

https://wiki.osdev.org/TLS_Handshake#SSL_Certificate_.28optional.29

60 / 78

https://wiki.osdev.org/TLS_Handshake#SSL_Certificate_.28optional.29

Sending Certificate and TLS Signature

Key

Public
Certificate

Signing

Information

Server Signature

Certificate Signing Request

Certificate Authority Signature

Certificate

Key

PrivatePublic

Key

with Shared Secret

Certificate Key

signature

TLS Parameters

61 / 78

4. Browser Certificate Usage

https://www.flickr.com/photos/12227067@N02/

62 / 78

The momjian.us TLS Certificate

63 / 78

Certificate Chain to a Trusted Certificate Authority

64 / 78

Trusted Certificates

Firefox trusted certificate authorities are at https://ccadb-public.secure.force.com/
mozilla/CACertificatesInFirefoxReport.

Chrome does not include RapidSSL certificates so, for compatibility, the momjian.us
web server must send the RapidSSL intermediate certificate to clients.

65 / 78

https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport
https://ccadb-public.secure.force.com/mozilla/CACertificatesInFirefoxReport

Removal of Geotrust Global CA Prevents Certificate Validation

News report of a root certificate being distrusted: https://www.bleepingcomputer.com/news/
security/google-outlines-ssl-apocalypse-for-symantec-certificates/

66 / 78

https://www.bleepingcomputer.com/news/security/google-outlines-ssl-apocalypse-for-symantec-certificates/
https://www.bleepingcomputer.com/news/security/google-outlines-ssl-apocalypse-for-symantec-certificates/

5. Postgres Certificate Usage

https://momjian.us/main/blogs/pgblog/2017.html#January_9_2017

67 / 78

https://momjian.us/main/blogs/pgblog/2017.html#January_9_2017

Getting the Postgres Server Certificate

$ # https://github.com/thusoy/postgres-mitm (by Tarjei Husøy,uses Python)
$ wget https://github.com/thusoy/postgres-mitm/archive/master.zip
$ unzip master.zip
$ cd postgres-mitm-master/
$ # This returns the server certificate, not the entire chain.
$ postgres_get_server_cert.py $(hostname) | openssl x509 -text -noout
Certificate:

Data:
Version: 1 (0x0)
Serial Number:

90:b1:e0:3f:72:fb:65:8c
Signature Algorithm: sha256WithRSAEncryption

Issuer: CN=CA-intermediate
Validity

Not Before: May 3 01:47:21 2017 GMT
Not After : May 1 01:47:21 2027 GMT

Subject: CN=momjian.us
…

openssl s_client cannot be used because Postgres requires custom protocol messages before switching to
SSL mode. 68 / 78

Enabling Certificate Authentication

To verify server authenticity, the Postgres client must enable checking of the server

certificate by using connection options sslmode=verify-ca or sslmode=verify-full.

The later verifies the server certificate’s subject name matches the server’s host name.

For example, this authenticates the server certificate (but not the subject name):

psql "sslmode=verify-ca host=localhost dbname=postgres"

I specified the host name (localhost) because SSL is not supported on Unix domain

sockets, which is the default connection type on Unix-like platforms.

69 / 78

Private Root CAs

Postgres usually uses private CAs because servers and clients are typically part of the

same organization. (Using a public CA provides little value and adds another party that

must be trusted.) Therefore, to enable authentication, the Postgres client must store a

trusted root certificate, e.g:

$ cp root.crt ˜postgres/.postgresql/root.crt

70 / 78

Certificate Validation

Key

PrivatePublic

Key

Server Key

Key

Public

ServerCertificate

Signing

Information

Server Signature

Certificate Signing Request

Certificate Authority Signature

Server Certificate

Pubic Key

CA

RootCertificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

Key

PrivatePublic

Key

Client Key

Key

Public

ClientCertificate

Signing

Information

Client Signature

Certificate Signing Request

Certificate Authority Signature

Client Certificate

Pubic Key

Root

CA

Certificate

Signing

Information

Root CA Signature

Certificate Signing Request

Root CA Signature

Root CA Certificate

$PGDATA/server.key

server

client

~/.postgresql/postgresql.key

~/.postgresql/postgresql.crt ~/.postgresql/root.crt

$PGDATA/server.crt $PGDATA/root.crt

perhaps through intermediate CAs

https://momjian.us/main/blogs/pgblog/2017.html#January_17_2017

71 / 78

https://momjian.us/main/blogs/pgblog/2017.html#January_17_2017

Server Certificate with Intermediate and Leaf

Using the previously-created certificates and using:
$ cat server.crt CA-intermediate.crt > $PGDATA/server.crt

These client root.crt contents allow connections:

• CA-root.crt (the server provides the intermediate and leaf)

• CA-intermediate.crt CA-root.crt (the client intermediate is ignored)

• CA-root.crt CA-intermediate.crt (the order of certificates in root.crt doesn’t

matter)

• CA-root.crt CA-intermediate.crt server.crt (extra client certificates are

ignored)

and these fail because no root certificate is stored on the client:

• CA-intermediate.crt

• server.crt

• server.crt CA-intermediate.crt

• CA-intermediate.crt server.crt
72 / 78

Server Certificate With Only Leaf

If we store only the server certificate on the server:

$ cat server.crt > $PGDATA/server.crt

These client root.crt contents allow connections:

• CA-intermediate.crt CA-root.crt (the client must supply the intermediate)

• CA-root.crt CA-intermediate.crt (order doesn’t matter here)

• CA-root.crt CA-intermediate.crt server.crt (the client ignores server.crt)

and these fail because the root or intermediate certificates are missing:

• CA-root.crt

• CA-intermediate.crt

• server.crt

• server.crt CA-intermediate.crt

• CA-intermediate.crt server.crt

73 / 78

The First Certificate in server.crt Is Special

If we store the intermediate certificate first on the server:

$ cat CA-intermediate.crt server.crt > $PGDATA/server.crt

the server will not start:

FATAL: could not load private key file "server.key":
key values mismatch

The first certificate in server.crt must match the keys in $PGDATA/server.key.

Additional stored certificates should be appended in reverse-signing order (for

compatibility).

74 / 78

Certificate Revocation List (CRL) Testing

$ cp CA-root.crt ˜postgres/.postgresql/root.crl
$ sql "sslmode=verify-ca host=$(hostname) dbname=postgres"
psql: SSL error: certificate verify failed

$ cp CA-intermediate.crt ˜postgres/.postgresql/root.crl
$ sql "sslmode=verify-ca host=$(hostname) dbname=postgres"
psql: SSL error: certificate verify failed

$ cp server.crt ˜postgres/.postgresql/root.crl
$ sql "sslmode=verify-ca host=$(hostname) dbname=postgres"
psql: SSL error: certificate verify failed

Multiple revoked certificates can be appended to the file.

75 / 78

Client Certificates

Placing certificates on Postgres clients has advantages:

• Servers can validate client certificates by:
• installing certificates on clients that are signed by a certificate authority the server trusts
• installing trusted root certificates on the server by specifying ssl_ca_file in

$PGDATA/postgresql.conf
• adding clientcert=verifyca or clientcert=verifyfull to hostssl lines in

pg_hba.conf

• Clients can even authenticate database user names to servers by setting the

certificate subject name

76 / 78

6. Conclusion: What Cryptography Can Accomplish

Authenticity Verify who is on the other end of the communication channel (X.509, RSA)

Confidentiality Only the other party can read the original messages (ECDHE, AES)

Integrity No other party can change or add messages (GCM, SHA)

77 / 78

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/cyberhades/

78 / 78

