The Wonderful World of WAL

BRUCE MOMJIAN

COOEDB

The write-ahead log, or WAL, provides key features of Postgres, which are covered by
this presentation.

https://momjian.us/presentations Creative Commons Attribution License
7
% Last updated: November 2025

1/125

A e

Outline

Inside the write-ahead log (WAL)
Crash recovery

Point-in-time recovery
Streaming binary replication
Logical replication

Replication slots

2/125

2001
2005
2010
2017

~ o~ o~ o~

1. Inside the Write-Ahead Log (WAL): History

PG 7.1): Write-ahead log
PG 8.0): Point-in-time recovery
PG 9.0): Streaming binary replication

PG 10): Logical replication and replication slots

https://bucardo.org/postgres_all_versions

3/125

https://bucardo.org/postgres_all_versions

Install pg_walinspect

CREATE EXTENSION IF NOT EXISTS pg walinspect;

https://www.postgresql.org/docs/current/pgwalinspect.html

4/125

https://www.postgresql.org/docs/current/pgwalinspect.html

Create Function to Remap Resource Manager

-- adjust resource_manager for historical names

CREATE FUNCTION remap resource manager(resource manager TEXT)
RETURNS TEXT AS

$$
SELECT CASE resource_manager
WHEN 'CLOG' THEN 'Pg xact'
WHEN 'XLOG' THEN 'Pg wal'
ELSE resource _manager
END
$$ LANGUAGE SQL;

57125

Pg walinspect with resource manager

-- adjust resource_manager for historical names
WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records info('0/01000000', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1
)
SELECT res_manager,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res_manager;

6/125

Output of Pg_walinspect with resource manager

res_manager | count | % | size%
------------- B i ittt h s
Btree | 15118 | 57.7 | 12.9
Database | 3] 0.0 0.0
Heap | 5638 | 21.5 | 15.9
Heap?2 | 2686 | 10.3 | 17.1
Pg_wal | 1263 | 4.8 | 52.0
Pg xact | 1] 0.0] 0.0
Re1Map | 1] 0.0] 0.0
Standby | 414 | 1.6 | 0.2
Storage | 310 1.2 | 0.1
Transaction | 756 | 2.9 | 1.7

7/125

Pg_walinspect with added record_type

-- add record_type
WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg_get wal_records_info('0/01000000', 'FFFFFFFF/FFFFFFFF")
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res_manager, record_type;

8/125

Pg walinspect: Btree

res_manager | record_type | count | % | size%
------------- B et Bkttt ittt Kkttt
Btree | DEDUP | 50 | 0.2 | 0.0
Btree | DELETE | 9| 0.0 0.0
Btree | INSERT LEAF | 14888 | 56.8 | 11.9
Btree | INSERT UPPER | 43] 0.2] 0.0
Btree | NEWROOT | 30| 0.1 | 0.0
Btree | SPLIT L | 15| 0.1] 0.4
Btree | SPLIT R | 38| 0.1] 0.5
Btree | VACUUM | 45 | 0.2 | 0.0

9/125

Pg walinspect: Database

res_manager | record_type | count | %

_____________ S U S
Database | CREATE_FILE COPY | 2 | 0.0
Database | CREATE WAL _LOG | 1] 0.0

10/125

Pg walinspect: Heap

res_manager | record_type | count | % | size%
------------- B et Bkttt ittt Kkttt
Heap | DELETE | 371 0.1 0.0
Heap | HOT_UPDATE | 393] 1.5| 0.4
Heap | INPLACE | 211 | 0.8 0.8
Heap | INSERT | 4326 | 16.5 | 9.1
Heap | INSERT+INIT | 156 | 0.6 | 1.5
Heap | LOCK | 258 | 1.0 | 2.8
Heap | UPDATE | 239 | 0.9 1.1
Heap | UPDATE+INIT | 18] 0.1] 0.2

11/125

Pg_walinspect: Heap2

res_manager | record_type | count | % | size%
------------- B et Bkttt ittt Kkttt
Heap?2 | MULTI_INSERT | 1665 | 6.4 | 2.6
Heap?2 | MULTI_INSERT+INIT | 52 | 0.2 | 0.6
Heap2 | PRUNE_ON_ACCESS | 269 | 1.0] 0.1
Heap?2 | PRUNE_VACUUM CLEANUP | 49 | 0.2 | 0.0
Heap2 | PRUNE_VACUUM SCAN | 256 | 1.0 | 0.3
Heap?2 | VISIBLE | 395 | 1.5 | 13.4

“Heap2” is the same as “Heap” and is used to support additional heap record types.

12/125

Pg_walinspect: Pg_wal

res_manager | record_type | count | % | size%
------------- e s e
Pg_wal | CHECKPOINT ONLINE | 41 0.0 0.0
Pg_wal | CHECKPOINT REDO | 4] 0.0 0.0
Pg_wal | CHECKPOINT SHUTDOWN | 3] 0.0 0.0
Pg_wal | FPI | 1106 | 4.2 | 42.5
Pg_wal | FPI_FOR HINT | 142] 0.5 | 9.5
Pg_wal | NEXTOID | 4] 0.0 0.0

13/125

Pg walinspect: Pg xact

res manager | record type | count | %

e o o o o
Pg xact | ZEROPAGE | 1] 0.0
Pg_xact | ZEROPAGE | 1] 0.0

14/125

Pg_walinspect: RelMap

res_manager | record type | count | % | size%
------------- B et Bkttt ittt Kkttt
ReTMap | UPDATE | 1 0.0 | 0.0

15/125

Pg walinspect: Standby

res_manager | record type | count | % | size%
------------- B et Bkttt ittt Kkttt
Standby | INVALIDATIONS | 139 | 0.5] 0.1
Standby | LOCK | 271] 1.0] 0.1
Standby | RUNNING_XACTS | 4] 0.0] 0.0

16/125

Pg_walinspect: Storage

res_manager | record type | count | % | size%
------------- e s e
Storage | CREATE | 310 | 1.2] 0.1

17/125

Pg walinspect: Transaction

res_manager | record type | count | % | size%
------------- B et Bkttt ittt Kkttt
Transaction | COMMIT | 756 | 2.9 | 1.7

18/125

CREATE TABLE

-- Isn (log sequence numbers) values represent locations in the WAL
SELECT pg_current wal 1sn() AS start Isn
\gset

-- PRIMARY KEY creates an index
CREATE TABLE wal _test (x INTEGER PRIMARY KEY);

19/125

WAL Records for CREATE TABLE

-- uses psql variable start_lsn
WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg_get wal_records_info(:'start_lsn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res_manager, record_type;

20/125

WAL Records for CREATE TABLE

res manager | record type | count | % | size%
S S S R S S — S
Btree | INSERT LEAF | 50 | 63.3 | 41.9
Heap | INPLACE | 2| 2.5| 6.3
Heap | INSERT | 7|1 8.9 | 17.2
Heap2 | MULTI_INSERT | 9 | 11.4 | 19.4
Heap?2 | PRUNE_ON_ACCESS | 5| 6.3] 3.1
Pg_wal | FPI | 1| 1.3 1.7
Standby | LOCK | 2| 25| 1.0
Storage | CREATE | 2 | 2.5 1.0
Transaction | COMMIT | 1] 1.3] 8.4

21/125

INSERT

SELECT pg_current wal 1sn() AS start Tsn
\gset

INSERT INTO wal test VALUES (1);

22/125

WAL Records for INSERT

WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res manager, record type;

23/125

Heap

WAL Records for INSERT

res_manager | record type | count | % | size%
_____________ S
| INSERT LEAF | 1| 25.0 | 25.9

| NEWROOT | 1| 25.0 | 36.4

| INSERT+INIT | 1| 25.0 | 23.9

1] 25.0 | 13.8

Transaction | COMMIT |

24/125

UPDATE

SELECT pg_current wal 1sn() AS start Tsn
\gset

UPDATE wal test SET x = 2;

25/125

WAL Records for UPDATE

WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res manager, record type;

26/125

WAL Records for UPDATE

res_manager | record type | count | % | size%
------------- B il Rttt it ekttt
Btree | INSERT LEAF | 1] 33.3] 38.3
Heap | UPDATE | 1] 33.3| 41.3
Transaction | COMMIT | 1] 33.3] 20.4

27/125

DELETE

SELECT pg_current wal 1sn() AS start Tsn
\gset

DELETE FROM wal test;

28/125

WAL Records for DELETE

WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res manager, record type;

29/125

Heap | DELETE
Transaction | COMMIT

WAL Records for DELETE

_type | count | % | size%
______ S
| 1| 50.0 | 61.4
| 1] 50.0 | 38.6

30/125

DROP TABLE

SELECT pg_current wal 1sn() AS start Tsn
\gset

DROP TABLE wal test;

31/125

WAL Records for DROP TABLE

WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res manager, record type;

32/125

WAL Records for DROP TABLE

res manager | record type | count | % | size%
S S S R S S — S
Heap | DELETE | 21 | 84.0 | 57.6
Heap2 | PRUNE_ON ACCESS | 1| 4.0] 2.9
Standby | LOCK | 2] 8.0 4.3
Transaction | COMMIT | 1] 4.0 35.2

33/125

INSERT a Second Row

CREATE TABLE wal test (x INTEGER PRIMARY KEY);
INSERT INTO wal test VALUES (1);

SELECT pg_current wal 1sn() AS start Isn
\gset

INSERT INTO wal test VALUES (2);

34/125

WAL Records for Second INSERT

WITH wal_records AS (
SELECT remap_resource manager(resource manager) AS res manager,
record_type,
COUNT(*) AS count,
SUM(record length) as size
FROM pg get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
GROUP BY 1, 2
)
SELECT res_manager,
record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"
FROM wal_records
ORDER BY res manager, record type;

35/125

WAL Records for Second INSERT

| INSERT LEAF | 1] 33.3] 40.8
| INSERT | 1]33.3] 37.6
Transaction | COMMIT | 1] 33.3 21.7

36/125

Detailed WAL Records for Second INSERT

\x
SELECT *

FROM pg_get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
ORDER BY start Tsn;

37/125

WAL Record #1

<[RECORD 1 Jmmmm#mmmmmmmmmmmmmmmmmemmcm e e e e e
start_1sn | 0/01BB8540

end Tsn | 0/01BB8580

prev_1Isn | 0/01BB8518

xid | 766

resource manager | Heap

record_type | INSERT

record_length | 59

main_data_length | 3

fpi_length | 0

description | off: 2, flags: 0x00

block_ref | blkref #0: rel 1663/16384/16399 fork main blk 0

38/125

WAL Record #2

<[RECORD 2 J-mmmmmmmmmmmmmmmmmm o e e e e e e
start_1sn | 0/01BB8580

end Tsn | 0/01BB85CO

prev_1Isn | 0/01BB8540

xid | 766

resource_manager | Btree

record_type | INSERT_LEAF

record_length | 64

main_data_length | 2

fpi_length | 0

description | off: 2

block ref | blkref #0: rel 1663/16384/16403 fork main blk 1

39/125

WAL Record #3

<[RECORD 3]=mmmtmmmmmmmm e e
start_1sn 0/01BB85CO
end_Tsn 0/01BB85E8
prev_lsn 0/01BB8580

+
|
|
|
xid | 766
resource manager | Transaction
|
|
|
|
|
|

record_type COMMIT

record_Tength 34

main_data_length | 8

fpi_length 0

description 2025-10-31 19:00:00.978944-04
block_ref

40/125

More Detailed WAL Record #1

SELECT *

FROM pg get wal_block_info(:'start_lsn', 'FFFFFFFF/FFFFFFFF')
ORDER BY start Tsn
LIMIT 1;

41/125

More Detailed WAL Record #1

<[RECORD 1 Jemmmmtmmmmmmmmmmmmmmmcmmem
start_lsn 0/01BB8540

end 1sn 0/01BB8580

prev_1sn 0/01BB8518

block_id 0

1663
16384

"
|
|
|
|
reltablespace |
reldatabase |
relfilenode | 16399
relforknumber | 0
relblocknumber | 0

|

|

|

|

|

|

|

|

|

|

|

xid 766
resource_manager Heap
record_type INSERT
record_length 59
main_data_length 3
block data_length | 10
block_fpi_length 0
block _fpi_info (nu1l)

description
block data
block_fpi_data

off: 2, flags: 0x00
\x01000008180002000000

42/125

Logical Replication Adds WAL Record #4

ALTER SYSTEM SET wal level = 'logical';
$ pg_ctl restart

SELECT pg_current_wal _Tsn() AS start lsn
\gset

INSERT INTO wal_test values (3);
\Xx
SELECT *

FROM pg_get wal records_info(:'start 1sn', 'FFFFFFFF/FFFFFFFF')
ORDER BY start_1Isn;

43/125

Logical Replication Adds WAL Record #4

<[RECORD 4 Jemmmtm e mmm e e e e e e mmm
start_1sn | 0/01BC0O9DO

end Tsn | 0/01BCOAO8

prev_1sn | 0/01BC0O9A0

xid | 0

resource manager | Standby

record_type | RUNNING_XACTS

record_length | 50

main_data_length | 24

fpi_length | 0

description | nextXid 770 latestCompletedXid 769 oldestRunningXid 770
block_ref |

44/125

e Text

Generative Al Use Cases

e chatbots

semantic/vector search
summarization
language translation

¢ Image/audio/video creation and search

e Software

® code creation

code analysis

data analysis

programming language conversion *

natural language interface for tasks previously requiring specialized software

https://www.turing.com/resources/generative-ai-applications

https://www.youtube.com/watch?v=zjkBMFhN]j_g
* https://www.codeconvert.ai/

45/125

https://www.turing.com/resources/generative-ai-applications
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://www.codeconvert.ai/

Discriminative and Generative Al Compared

Discriminative

Generative

supervised learning requires training
data with known outcomes

outcomes determined from
massive training data

often problem-domain specific

usually general

output is a determination/prediction

output is new content

Discriminative unsupervised learning is similar to generative because it does not include

known outcomes.

46/125

Discriminative and Generative Al Compared

A generative algorithm models how the data was "generated", so you ask it "what’s the
likelihood this or that class generated this instance?" and pick the one with the better
probability. A discriminative algorithm uses the data to create a decision boundary, so
you ask it "what side of the decision boundary is this instance on?" So it doesn’t create a

model of how the data was generated, it makes a model of what it thinks the boundary
between classes looks like. — Anthony, Pittsburgh

https://stackoverflow.com/questions/879432/what-is-the-difference-between-a-generative-and-a-discriminative-algorithm

47/125

https://stackoverflow.com/questions/879432/what-is-the-difference-between-a-generative-and-a-discriminative-algorithm

Discriminative Boundary

boundary.eps

They focus on boundaries between groups.

https://solutionshub.epam.com/blog/post/generative-ai-vs-predictive-a

48/125

https://solutionshub.epam.com/blog/post/generative-ai-vs-predictive-ai

Generative Vectors

vector.eps

The color of the arrows is meant to represent an aspect of the word, or an aspect of how
the word appeared in the training data. It focuses on relationships between items.

49/125

2. Hyper-Dimensional Vectors: Math

Mathematics allows the representation of concepts that can’t be represented in the real
world:

e Numbers greater than the number of atoms in the universe (108°)

Infinity (c0)

Function derivatives calculate slopes using infinitesimally small adjustments

Function integration involves the infinite sum of infinitesimally small areas

50/125

Duality

Mathematics allows concepts to be represented in multiple forms. For example, vectors
can be thought of as representing the

® Physical world
e Computer science arrays

e Abstract representations

https://en.wikipedia.org/wiki/Duality_(mathematics)

517125

https://en.wikipedia.org/wiki/Duality_(mathematics)

Hyper-Dimensional Vectors

hyper-vector.eps

Mathematics allows vectors in dimensions beyond the three-dimensional world to be

used for Al This is a two-dimensional image represents 10 dimensions. ChatGPT3’s

text embedding vectors can use 1024 to 12288 dimensions, meaning the image above
would require 100-1,200 times more nesting.

https://community.openai.com/t/what-version-of-gpt-is-text-embedding-ada-002-based-on/404462

52/125

https://community.openai.com/t/what-version-of-gpt-is-text-embedding-ada-002-based-on/404462

Hyper-Dimensional Vector Range

hyper-vector.eps

Each axis is typically a 4-byte floating point number. With 1k-12k dimensions, that
yields a total range of 10%%to 10 8kvalues, far more than the number of atoms in the
universe. (Even if we use only 4-byte floats between +1, and adjusting the the limited
use of bits by floating point numbers, the minimum range is still 108%,)

https://stackoverflow.com/questions/7744016/how-many-distinct-values-can-be-stored-in-floating-point-formats

53/125

https://stackoverflow.com/questions/7744016/how-many-distinct-values-can-be-stored-in-floating-point-formats

Hyper-Dimensional Vector Magnitude

hyper-vector.eps

Notice that each vector has the same length or magnitude.

https://postgresml.org/docs/open-source/pgml/guides/embeddings/vector-normalization
https://stackoverflow.com/questions/10002918/what-is-the-need-for-normalizing-a-vector

54/125

https://postgresml.org/docs/open-source/pgml/guides/embeddings/vector-normalization
https://stackoverflow.com/questions/10002918/what-is-the-need-for-normalizing-a-vector

3. Training Text Embeddings

To train generative Al
1. Create vectors
® one for each English word/token (30-50k)
® words can be added automatically
® tokenizers can also be made up by letter combinations (byte-pair based, ideal for rare
words and proper nouns)
® assign each vector the same fixed length/magnitude (normalized vectors)
® assign each vector a random direction in the 1k-12k dimensional space
2. Adjust the direction of vectors using a massive number of training documents (e.g.,
word2vec) by either
® for each word, adjust its vector to be closer to the vectors of surrounding words, e.g.,
bag of words
e for each word, adjust the vectors of surrounding words to be closer its vector, e.g.,
skip-gram
https://neptune.ai/blog/vectorization-techniques-in-nlp-guide

https://jalammar.github.io/i1lustrated-word2vec/

https://neptune.ai/blog/vectorization-techniques-in-nlp-guide

https://medium.com/@aidant0001/unraveling-the-magic-of-word-embeddings-1f6fac66c647 55/125

https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://jalammar.github.io/illustrated-word2vec/
https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://medium.com/@aidant0001/unraveling-the-magic-of-word-embeddings-1f6fac66c647

Text Embeddings with Random Directions

embedding.eps

https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/

56/125

https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/

Training Example

For the training text:
The king is a tall man.

we move each red word closer to the blue words, or the blue words closer to the red
word (depending on the training method):
1. The king is a tall man.
The king is a tall man.
The king is a tall man.
The king is a tall man.
The king is a tall man.

A

The king is a tall man.

https://towardsdatascience.com/word2vec-out-of-the-black-box-a404b4119681

571125

https://towardsdatascience.com/word2vec-out-of-the-black-box-a404b4119681

Training Example

For the training text:
The king is a tall man. The queen is a beautiful woman. They sit together in the
throne room of the castle.
we have
e “king” getting closer to “man”
e “tall” getting closer to “man” and “king”
e “queen” getting closer to “woman”
e “beautiful” getting closer to “woman” and “queen”
e “throne” getting closer to “castle”

% <« <« » <«

e “king”, “man” “queen”, “woman” getting closer to “throne” and “castle” (spans
sentences)

58/125

Training Example

e phrases and minor words also move closer to each other, e.g.,
® “The” is closer to “king”
® “throne” is closer to “room”
e “throne” and “room” are closer to “castle”
Consider there are 1-12 thousand dimensions, so moving words closer in one
dimension might not affect closeness in other dimensions.

59/125

Text Embeddings with Learned Directions

King - Man + Woman = Queen
Woman - Man + King = Queen

embedding2.eps

https://jalammar.github.io/i1lustrated-word2vec/
https://www.elastic.co/search-1abs/blog/generative-ai-transformers-explained

60/125

https://jalammar.github.io/illustrated-word2vec/
https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained

Text Embeddings

chatgpt_embedding.jpg

61/125

4. Semantic/Vector Search

Postgres has supported full text/phrase search since 2003, but that only finds
base/stemmed words. It has no concept of synonyms (except those explicitly configured)
or word relationships. As you can imagine from our previous slides, semantic/vector
search promises much richer search capabilities. Full text/phrase search is better for
precise queries and handles proper nouns better. It is possible to use a hybrid search
which combines full text/phrase search and semantic/vectors search.

https://blog.meilisearch.com/full-text-search-vs-vector-search/
https://www.youtube.com/watch?v=P5Vpalyh8Iw

62/125

https://blog.meilisearch.com/full-text-search-vs-vector-search/
https://www.youtube.com/watch?v=P5VpaUyh8Iw

R A

Semantic/Vector Search Setup

Download a pre-trained text embedding, or create your own

Choose a chunk size (sentence, paragraph, section, page, document)
Find text embedding vectors of all words (or byte pairs) in the chunk
Average the vectors

Store them in the database along with the chunk

https://qdrant.tech/articles/what-is-rag-in-ai/

https://zi11iz.com/1earn/guide-to-chunking-strategies-for-rag
https://ragaboutit.com/the-definitive-guide-to-document-chunking-for-ai-applications/

63/125

https://qdrant.tech/articles/what-is-rag-in-ai/
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag
https://ragaboutit.com/the-definitive-guide-to-document-chunking-for-ai-applications/

Semantic/Vector Search

1. Find text embedding vectors of all words in the query
2. Average the vectors

3. Search for the closest (nearest neighbor) vectors in the database and return their
chunks

https://www.couchbase.com/blog/what-is-vector-search/

64/125

https://www.couchbase.com/blog/what-is-vector-search/

Search Setup Example

Assume you wish to index this document using semantic/vector search:
The king is a tall man. The queen is a beautiful woman. They sit together in the
throne room of the castle.
If you choose a chunk size of sentences, you will store and index:
1. The king is a tall man. (average 6 vectors)
2. The queen is a beautiful woman. (average 6 vectors)

3. They sit together in the throne room of the castle. (average 10 vectors)

65/125

Search Example

A search of:
Who is the king?

will find the text embedding vectors of the query words, average them, and find the
closest (nearest neighbor) stored vector which is this chunk:

The king is a tall man.

66/125

Example: Install pgvector

CREATE EXTENSION IF NOT EXISTS vector;

Pgvector can be found at https://github.com/pgvector/pgvector. All queries in this presentation
can be downloaded from https://momjian.us/main/writings/pgsql/trenches.sql.
67/125

https://github.com/pgvector/pgvector
https://momjian.us/main/writings/pgsql/trenches.sql

Create Table to Store Documents and Vectors

CREATE TABLE document (
id SERIAL PRIMARY KEY,
content TEXT NOT NULL
)s

CREATE TABLE document_embedding (
id INTEGER PRIMARY KEY,
-- ChatGPT4's text embedding vectors have 1536 dimensions
embedding vector(1536) NOT NULL

)s

Example based on the URL at the bottom right.

https://www.enterprisedb.com/blog/what-is-pgvector

68/125

https://www.enterprisedb.com/blog/what-is-pgvector

Populate Document Table

INSERT INTO document (content) VALUES
('The king is a tall man.'),
('The queen is a beautiful woman.'),
('They sit together in the throne room of the castle.');

-- It is performant to create HNSW indexes on empty tables, unlike IVFFlat.
-- https://www.cybertec-postgresql.com/en/indexing-vectors-in-postgresql/
CREATE INDEX document embedding_embedding_idx ON document embedding

USING hnsw (embedding vector_12_ops);

69/125

https://www.cybertec-postgresql.com/en/indexing-vectors-in-postgresql/

Populate Text Embedding

#! Jusr/bin/env python
""Add document embeddings to the vector search table """

import os

import sys

from openai import OpenAl
import psycopg

if len(sys.argv) != 1:
print("Usage: " + os.path.basename(_file), file=sys.stderr)
sys.exit(1)

Get OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API KEY"))

Specify the embedding model
MODEL_ID = "text-embedding-ada-002"

70/125

Populate Text Embedding

Connect to the database
conn = psycopg.connect("host=1ocalhost port=5432 dbname=ai user=postgres")

Fetch documents
cur = conn.cursor()
cur.execute("SELECT id, content FROM document")

Create embeddings for each document and store in the database
for doc_id, doc_content in cur.fetchall():
embedding = (
client.embeddings.create(input=doc_content, model=MODEL_ID).data[0] .embedding
)

cur.execute(
INSERT INTO document embedding (id, embedding)
VALUES (%s, %s);""",
(doc_id, embedding),
)

Commit and close the database connection
conn.commit()
conn.close()

71/125

Embeddings Stored

-- show embeddings for documents
SELECT content,

substring(embedding::text, 1, 30) AS embedding
FROM document JOIN document_embedding USING (id);

content | embedding
___ F o e ——————
The king is a tall man. | [0.004228712,-0.0132633485,0.0..
The queen is a beautiful woman. | [-0.006298352,0.008259722,-0.0..
They sit together in the throne room of the castle. | [0.01191413,-0.03098976,-0.010..

-- each dimension is four bytes (float4)

SELECT pg_column_size(embedding),
pg_column_size(embedding) / 1536 AS bytes per_dim

FROM document_embedding;

pg_column_size | bytes per dim

................ Fom e —————
6148 | 4
6148 | 4
6148 | 4

72/125

Query Text Embedding

#! /usr/bin/env python
"t perform vector search of documents """

import os

import sys

from openai import OpenAl
import psycopg

if len(sys.argv) != 2:
print("Usage: " + os.path.basename(_file) + " search_string", file=sys.stderr)
sys.exit(1)

Get the user query
search = sys.argv[1]

Get OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

Specify the embedding model
MODEL_ID = "text-embedding-ada-002"

73/125

Query Text Embedding

Get embedding for the user query
embedding = client.embeddings.create(input=search, model=MODEL_ID).data[0].embedding

Connect to the database
conn = psycopg.connect("host=1ocalhost port=5432 dbname=ai user=postgres")

Fetch documents in order of their vector search similarity to the user query
cur = conn.cursor()
cur.execute(
SELECT content, embedding <-> %s::vector
FROM document JOIN document_embedding USING (id)
ORDER BY 2;""",
(embedding,),
)

Output documents ordered by similarity
for doc_content, distance in cur.fetchall():
print(f"{doc_content:<52} {distance}")

Commit and close the database connection
conn.commit()

conn.close() 74/125

Query Examples

-- This is matching a word, so it could have been done
Who is the king?

The king is a tall man. 0
The queen is a beautiful woman.

o

They sit together in the throne room of the castle. 0
-- same

Who is tall?

The king is a tall man. 0
They sit together in the throne room of the castle. 0
The queen is a beautiful woman. 0

with full text search.

.6235435682429836
.6943989871300065
.7003168615080256

.6273594902980766
.6957198032305553
.7227548068086962

751125

Query Examples

-- The vector for "short" is near "tall".
Who is short?

The king is a tall man.

The queen is a beautiful woman.

They sit together in the throne room of the castle.

-- The vector for "pretty" is near "beautiful".
Who is pretty?
The queen is a beautiful woman.

They sit together in the throne room of the castle.

The king is a tall man.

-- The vector for "palace" is near "castle".
Who is in the palace?

They sit together in the throne room of the castle.

The king is a tall man.
The queen is a beautiful woman.

-- The vector for "chair" is near "sit".
Where is the chair?

They sit together in the throne room of the castle.

The king is a tall man.
The queen is a beautiful woman.

o

o O o

o O o

o

.6878928016051950
.7552441994053801
.7593614930258540

.6579895352151753
.7473554877225373
.7480856783292117

.5872522481044645
.6646927703591086
.6908769898680150

.6865519576029434
.7417508497217221
.7578119887517404

76/125

5. Transformers

Transformers allow the embedding vectors just shown and attention blocks to generate
output. While images and videos can also be created, this presentation will focus on text
generation. How is this done?

1. Load the first attention block with the text embedding vectors of the words used in
the user query

Adjust vectors to be closer to previous words/vectors
Repeat step 2 several times

Find the word closest to the last vector, and use it as the first output word

“»hn A W

Repeat step 2 and later to get successive words

https://medium.com/@RobinVetsch/n1p-from-word-embedding- to-transformers-76ael24e6281
https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190

771125

https://medium.com/@RobinVetsch/nlp-from-word-embedding-to-transformers-76ae124e6281
https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190

Attention Block Details

e Shown are self-attention blocks:

® only previous vectors affect current vectors, not later ones
¢ used to generate new words
® translation uses cross-attention blocks where later vectors can also affect earlier ones

e While the following slides show attention block 1 in seven steps, attention blocks
do vector calculations in parallel as matrix multiplication

® GPUs are very efficient at matrix multiplication
¢ internally uses a query/key/value process

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://www.youtube.com/watch?v=4naXLhVfeho
https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms

78/125

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://www.youtube.com/watch?v=4naXLhVfeho
https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms

Attention Block Details

e While text embedding vectors can be thousands of dimensions, attention blocks
usually use one-tenth the number of dimensions:

e GPT-3 uses 96 attention blocks with 128-dimension vectors
e Shown is zero-shot learning

® some models use single or multi-shot learning, e.g., “The capital of Spain is Madrid.”
is prepended to the user query
¢ Not shown
® word positions are numbered in the attention vectors

® sentence endings are also encoded; this is shown as “?”
® used for sentence construction

https://aigrowthguys.com/zero-shot-vs-multi-shot-prompting-prompt-engineering/
https://datascience.stackexchange.com/questions/118273/specifics-about-chatgpts-architecture

791125

https://aigrowthguys.com/zero-shot-vs-multi-shot-prompting-prompt-engineering/
https://datascience.stackexchange.com/questions/118273/specifics-about-chatgpts-architecture

Populate Initial Attention Block

transformerl 1.eps

80/125

N

“What”
(‘is”

“the »
“capital”
“Of ”»

“France’

>

€y

Current Attention Block Vectors

81/125

Adjust the Second Vector

transformerl 2.eps

82/125

N

“What”
“What” “is”
“the »
“capital”
“Of »

“France”

€y

Current Attention Block Vectors

83/125

Matrix Mask Prevents Adjustments from Later Words/Vectors

Words | What is the | capital| of France ?
What 1 0 0 0 0 0 0
is 1 1 0 0 0 0 0
the 1 1 1 0 0 0 0
capital 1 1 1 1 0 0 0
of 1 1 1 1 1 0 0
France 1 1 1 1 1 1 0
? 1 1 1 1 1 1 1

84/125

Adjust Vector 3

transformerl 3.eps

85/125

N

“What”

“What” ‘(is’,
“What” “is,’ “the”
“capital”

“Of 2

“France”

€y

Current Attention Block Vectors

86/125

Adjust Vector 4

transformerl 4.eps

87/125

N

Current Attention Block Vectors

“What”

“What is”

“What” “is” “the”

“What” “is” “the” “capital”
“of”

“France”

€y

88/125

Adjust Vector 5

transformerl 5.eps

89/125

Adjust Vector 6

transformerl 6.eps

90/125

Adjust Vector 7

transformerl 7.eps

91/125

NS AE R

End of Attention Block 1 Vectors

“What”

“What” “is”

“What” “is” “the”

“What” “is” “the” “capital”

“What” “is” “the” “capital” “of”

“What” “is” “the” “capital” “of” “France”

“What” “iS” “the” “Capital” “Of” “Fral‘lce” “?97

92/125

Attention Block Details

e Each vector of an attention block potentially can be moved closer to other vectors,
except the first vector:
¢ this is the “attention” aspect of attention blocks

® Vectors are normalized to maintain the same magnitude

® Vector movement is not uniform
® movement favors dimensionally-close vectors and previous movement
(backpropagation)
¢ distances are computed via vector dot products

https://www.datacamp.com/blog/attention-mechanism-in-11ms-intuition

93/125

https://www.datacamp.com/blog/attention-mechanism-in-llms-intuition

Continue Running Attention Blocks

transformer2+.eps

The next attention block uses vectors that were adjusted by the previous attention block. The headings are
now labeled as “vectors” because they no longer point to the original words of the user query.

94/125

L AN W N =

End of Attention Block 2 Vectors

(“What™)

(“What”)x (“What” “is”)

(“What”) x (“What” “is”) x (“What” “is” “the”)

(“What”) x (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the” “capital”)
(“What”) x (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the”
“capital”) x (“What” “is” “the” “capital” “of”)

(“What”)x (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the”
“capital”) x (“What” “is” “the” “capital” “of ”) x (“What” “is” “the” “capital” “of”
“France™)

(“What”) X (“What” (‘is”) >< (“What” “is” “the”) >< (“What” (‘is” “the”
“Capital”)x(“What” “is’) “the” “Capital” “Of”)X(“What” “is’) “the” “Capital” “Of »
“France”)x(“What” (‘is” “the” “Capital” “Of” (‘France” “?”)

95/125

B W N -

End of Attention Block 3 Vectors

“What”)
“What”) X ((“What”) X (“What” «: ”))
(“What”) (“What” «: ”)) X ((“What”) X (“What” «: ”) X (“What” «: ” “the”))

(“What”) (“What” «: ”) (“What” «: ” “the”)) X ((“What”) X (“What” «: ”) X (“What” «: ”
“the”) X (“What” «: ” “th » “Capltal”))

(
(
(
(

) ((“What”) (“What” «: ”) (“What” «: ” “the”) (“What” «: ” “the” “Capltal”)) X ((“What”) X (“What”

«: ”) (“What” «: ” “the”) (“What” «: ” “the” “Capltal”) (“What” «: ” “the” “Capltal” “Of”))

((“What”) (“What” «: ”) (“What” «: ” “the”) (“What” «: ” « he” “Capital”) (“What” “iS” “the”
“Capital” “Of ”)) ((“What”) (“What” «: ”) (“What” «: ” “the”) (“What” «: ” “the”
“Capital”)X(“What” «: ” “the” “Capltal” “Of”)X(“What” «: ” “the” “Capltal” « f” “France”))

((“What”) x (“What” “is”)x (“What” “is” “the”) x (“What” “is” “the” “capital”) x (“What” “is” “the”
“capital” “of ”)x (“What” “is” “the” “cap1ta1” “of” “France”))x((“What”)x(“What” “is”) x (“What”
“is” “the”) x (“What” “is” “the” “capital”) x (“What” “is” “the” “capital” “of ”) x (“What” “is” “the”
“capital” “of ” “France’) X (“What” “is” “the” “capltal” “of” “France” “?”))

96/125

End of Attention Block 4 Vectors

(“What”)
(“What”) X (“What”) X ((“What”) x (“What” “is))
(“What”) X ((“What”) x (“What” “is”)) x ((“What”) X (“What” “is”)) X (“What”) x (“What” “is”) x (“What” “is” “the”))

((“What”) X (“What” “is”)) X ((“What”) x (“What” “is”) X (“What” “is” “the”)) X ((“What”) X (“What” “is”) X (“What” “is” “the”)) X ((“What”) X (“What”
“Is”) X (“What” “is” “the”) X (“What” “is” “the” “capital”))

((“What”) X (“What” “is™) X (“What” “is” “the”)) X ((“What”) X (“What” “is”) X (“What” “is” “the”) X (“What” “is” “the”
“capital”)) X (“What”) x (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the” “capnal ")) X ((“What”) x (“What” “is”) X (“What” “is”
“the”) (“What” “is” “the” “capital”) X (“What” “is” “the” “capital” “of“))

((“What”) X (“What” “is”) X (“What” “is” “the”) x (“What” “is” “the” “capital”)) x ((“What”) X (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the”

“capital”) X (“What” “is” “the” “capltal” “of”)) X ((“What™) X (“\X/hat” “is”) X (“What” “is” “the”) X (“What” “is” “the” “capltal”) X (“What” “is” “the”
“capital” “of”)) x ((“What”) (“What” “is”) X (“What” “is” “the”) x (“What” “is” “the” “capltal”) X (“What” “is” “the” “capital” “of”) X(“What” “is”
“the” “capital” “of” “France”))

((“What”) X (“What” “is”) X (“What” “is” “the”) x (“What” “is” “the” “capital”) x (“What” “is” “the” “capital” “of*)) X ((“What”) x (“What”
“is”) X (“What” “is” “the”) x (“What” “is” “the” “capital”) x (“What” “is” “the” “capital” “of) X (“What” “is” “the” “capital” “of ”

“France) X ((“What”) X (“What” “is”) x (“What” “is” “the”) x (“What” “is” “the” “capital”) X (“What” “is” “the” “capital” “of ”) x (“What” “is” “the”
“capital” “of ” “France”)) X ((“What”) x (“What” i ”) X (“What” “is” “the”) X (“What” “is” “the” “Capltal”) X (“What” “is” “the” “capital”

“of”) X (“What” “is” “the” “capital” “of ” “France”) X (“What” “is” “the” “capital” “of ” uanceu “27)

97/125

After Running All Attention Blocks: Store and Output First Word

transformer wordl.eps

The last vector of the final attention block has dimensional values which represent the entire user query; its
position among other word vectors is used to generate answer text. Al chat apps usually display results one
word at a time because they generate results one word at a time.

https://jalammar.github.io/illustrated-transformer/ 98125

https://jalammar.github.io/illustrated-transformer/

Adjust the First Word

transformer wordl attention.eps

Vectors only adjust to previous vectors, so only vector8 needs adjustment.

99/125

After Running All Attention Blocks Again:
Store and Output Second Word

transformer_word2.eps

100/125

Transformer Flow

transformer flow.eps

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://www.elastic.co/search-1abs/blog/generative-ai-transformers-explained

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

1017125

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

6. Generative Al

Generated using large language model (LLM) ChatGPT4 o1-mini:

What is the capital of France?
The capital of France is Paris.

The capital of France is?
The capital of France is Paris.

Where is Paris?

Paris is the capital city of France, located in the north-central part of the country along
the Seine River. It is known for its rich history, art, culture, and landmarks such as the
Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.

https://dugas.ch/artificial_curiosity/GPT_architecture.html

102/125

https://dugas.ch/artificial_curiosity/GPT_architecture.html

Generative Al

Columbus is in Ohio. Where is Paris?
Paris is in France. There is also a city named Paris in the United States, located in Texas.
If you were referring to a different Paris, please specify!

I live in Texas. Where is Paris?

In Texas, there is a city named Paris, which is located in the northeastern part of the
state, in Lamar County. It is approximately 100 miles northeast of Dallas. There is also
a well-known city named Paris in France, which is the capital and largest city of the
country. If you’re referring to the Texas city, it’s known for its local attractions,
including the Eiffel Tower replica with a cowboy hat. If you meant the one in France,
it’s famous for its art, culture, and history.

1037125

7. Retrieval-Augmented Generation (RAG)

Retrieval-augmented generation (RAG) allows for data (below in red) to be passed to the
generative transformer to affect the user query (transformers can accept thousands of
words/tokens).

Where is paris¢

Paris is the capital city of France, located in the northern part of the country along the
Seine River. It is known for its rich history, culture, art, and landmarks such as the Eiffel
Tower, the Louvre Museum, and Notre-Dame Cathedral.

reply briefly
Where is Paris?
Paris is the capital city of France, located in the north-central part of the country along

the Seine River.

https://www.youtube.com/watch?v=Y08Nn230_mY
https://qdrant.tech/articles/what-is-rag-in-ai/

104/125

https://www.youtube.com/watch?v=Y08Nn23o_mY
https://qdrant.tech/articles/what-is-rag-in-ai/

$ rag -n 'reply briefly' 'Where
Payload:
{

"model": "gpt-4o0-mini",
"stream": true,
"temperature": 0.5,
"max_tokens": 8192,
"messages": [

{

"role": "system"

"content": "reply briefly'

b,
{

"role": "user",

RAG Internals

is Paris?'

"content": "Where is Paris?"

}
]
}

1057125

Columbus is in Obio.

Where is Paris?

Paris is the capital city of France, located in the north-central part of the country along
the Seine River. It is known for its art, fashion, gastronomy, and culture, as well as
landmarks such as the Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.

I live in Texas.

Where is Paris?

Paris is the capital city of France, located in the north-central part of the country along
the Seine River. It is known for its rich history, culture, art, and landmarks such as the
Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral. If you meant a different
Paris, such as Paris, Texas, it is a city located in the northeastern part of the state of
Texas.

106/125

Data Can Be Passed via RAG

Using the following RAG data for each query:

{¥order_id”: 735, “product”: "gears", “amount”: 21, “inv_date”: 2024-04-12}
{“order_id”: 4423, “product”: "pencils", “amount”: 13, “inv_date”: 2024-02-05}
{“order_id”: 1334, “product”: "glue", “amount”: 5, “inv_date”: 2024-03-25}

A more sophisticated example would be to first create a list of questions or keywords and

their relevant SQL queries. A semantic/vector search could then be performed on each
user query to choose the relevant SQL query, run it, and supply its output as RAG data.

107/125

Data Can Be Passed via RAG

When were the orders made?
The orders were made on the following dates:

1. Order ID 735: April 12, 2024
2. Order ID 4423: February 5, 2024
3. Order ID 1334: March 25, 2024

What is the earliest invoice?
The earliest invoice is for the product "pencils" with order_id 4423, dated February 5,
2024.

108/125

Data Can Be Passed via RAG

What is the total of all invoices?
To calculate the total of all invoices, we need to sum the amounts for each order:

1. Order 735: Amount = 21
2. Order 4423: Amount = 13
3. Order 1334: Amount = 5
Now, adding them together:

Total =21 + 13 + 5 = 39

The total of all invoices is 39.

109/125

Data Can Be Passed via RAG

What is the average invoice amount?
To calculate the average invoice amount, we first need to sum the amounts from the
provided orders and then divide by the number of orders.

Here are the amounts from the orders:
- Order 735: 21

- Order 4423: 13

- Order 1334: 5

Now, let’s calculate the total amount:

Total amount = 21 + 13 + 5 = 39

Next, we count the number of orders, which is 3.

Now, we can calculate the average:

Average invoice amount = Total amount / Number of orders = 39/ 3 = 13
So, the average invoice amount is 13.

1107125

Complex Calculations Are Possible

Today is April 15, 2024. With 30-day payment expected, which invoices are overdue?
To determine which invoices are overdue as of April 15, 2024, we need to check the
invoice dates and see if they are more than 30 days old from the current date.

1. **Invoice for gears**:

- Inv Date: April 12,2024

- Payment Due Date: May 12, 2024 (April 12 + 30 days)
- Status: Not overdue

2. **Invoice for pencils**:

- Inv Date: February 5, 2024

- Payment Due Date: March 6, 2024 (February 5 + 30 days)
- Status: Overdue

1117125

Complex Calculations Are Possible

3. **Invoice for glue**:

- Inv Date: March 25, 2024

- Payment Due Date: April 24, 2024 (March 25 + 30 days)
- Status: Not overdue

Based on this analysis, the only overdue invoice is for **pencils** (order_id 4423).

1127125

Complex Calculations Are Possible

What is the total of invoices that are not pencils?
To calculate the total of invoices that are not for pencils, we will look at the provided
orders and sum the amounts for each product except for pencils.

Here are the relevant orders:

1. Gears: 21
2. Glue: 5

Now, we add these amounts together:
21 (gears) + 5 (glue) = 26
Therefore, the total of invoices that are not for pencils is **26**.

1137125

Complex Calculations Are Possible

Today is April 15, 2024. What is the next expected order date?

Since today’s date is April 15, 2024, and the most recent order date in the provided data
is April 12, 2024, we can estimate the next expected order date by looking at the
pattern of previous orders. However, there is not enough information in the provided
data to determine a specific frequency or pattern of orders. If we assume that orders are
placed regularly, we can consider the time intervals between the previous orders:

1. Order on February 5, 2024
2. Order on March 25, 2024 (48 days after the previous order)
3. Order on April 12, 2024 (18 days after the previous order)

Given the decreasing intervals, it’s challenging to predict a specific date. However, if we
were to assume a similar timeframe, we could expect the next order to occur sometime
in the following weeks. A rough estimate might suggest the next order could be expected
around late April to early May 2024, but without a clear pattern, it remains uncertain.

1147125

SQL Queries Can Be Generated

What SOL query will generate the latest invoice date?

To generate the latest invoice date from a table (let’s assume the table is named
’invoices’), you can use the following SQL query:

ENENEN Sql

SELECT MAX(inv_date) AS latest_invoice_date
FROM invoices;

[NENEN

This query uses the "MAX()’ function to find the most recent date in the ’inv_date’
column, returning it as ’latest_invoice date’. Make sure to replace ’invoices’ with the
actual name of your table if it’s different.

1157125

Data Can Be Taken from a Database

CREATE TABLE invoice (
order_id INTEGER PRIMARY KEY,
product TEXT NOT NULL,
amount NUMERIC(10,2),
inv_date DATE

)s

INSERT INTO invoice VALUES
(735, 'gears', 21, '2024-04-12'),
(4423, 'pencils', 13, '2024-02-05'),
(1334, 'glue', 5, '2024-03-25');

$ # This invoice list can be customized by customer.
$ rag "$(psql --tuples-only -c '\
SELECT to_json(invoice.*) \
FROM invoice \
WHERE cust_id = 12;' ai)" |\
> 'How many invoices are there?'
There are three invoices.

116/125

8. Deployment

overview.eps

1177125

Relational Databases for Semantic/Vector Search & Generative Al

Section Al Feature Details DB Appropriateness
3 text embedding vector training batched changes, mostly static poor
4 semantic/vector search search existing database contents good
5 & 6 | tranformers & generative Al billions of comparisons poor
7 retrieval-augmented generation (RAG) | add details to user queries good
7 language queries on retrieved data supplied as JSON good
7 generate SQL queries natural language to SQL unknown*
data analysis regression and time series good

Relational databases continue to be appropriate for discriminative Al. Al tools can also
help with database migrations, e.g., Oracle to Postgres.

https://momjian.us/main/blogs/pghlog/2018.html#November 28 2018
* https://www.reddit.com/r/SQL/comments/127zawr/who_here_is_using_chatgpt_to_help_with_sql_code/

1187125

https://momjian.us/main/blogs/pgblog/2018.html#November_28_2018
https://www.reddit.com/r/SQL/comments/127zawr/who_here_is_using_chatgpt_to_help_with_sql_code/

Deployment Options

As you have seen, there are several options for using generative Al:

¢ Cloud service model, e.g., ChatGPT
e Self-managed model
® only publicly trained, e.g., Meta’s Llama
® publicly trained with private fine-tuningpre, e.g., domain-specific chat assistant
® [ocally trained public and private data sets, e.g., structured-wikipedia
® [ocally trained with only private data
® private training requires an open data model
® Hugging Face offers many pretrained models and public data sets
® most OpenAl models are not open®
e The above options can be augmented with local data, i.e., RAG; data derived from
® personal preferences
® relational data and supplied as JSON, e.g., PostgreSQL
® text retrieved either via full text/phrase search or semantic/vector search

https://zapier.com/blog/hugging- face/

https://www.infoworld.com/article/2338922/5-easy-ways-to-run-an-1Im-Tocally.html

https://www.nature.com/articles/d41586-024-02998-y
* https://ana]yticsindiamag.com/ai—mysterw’es/ﬁ—open—source—mode]s—from—openaw’/lm/125

https://zapier.com/blog/hugging-face/
https://www.infoworld.com/article/2338922/5-easy-ways-to-run-an-llm-locally.html
https://www.nature.com/articles/d41586-024-02998-y
https://analyticsindiamag.com/ai-mysteries/6-open-source-models-from-openai/

Postgres Al Solutions

pgvector, already covered

Tembo’s pg_vectorize

EDB’s Al extension aidb (Pipelines)

Timescale’s Al extension pgai

PostgresML’s Al toolkit

Al toolkits from cloud vendors

Lantern Cloud

Workik, PopSQL, and SQL Al SQL query generators
Postgres.AI’s PostgreSQL chatbot

DBtune for server parameter tuning

https://github.com/ftisiot/postgresql-ai-projects

1207125

https://github.com/ftisiot/postgresql-ai-projects

9. Conclusion

Pre-computer philosophy

1950’s Turing test

1980’s Expert systems

1970’s - 1990’s Al winter

2010’s Robotics

2013 word2vec by Google

2017 Attention blocks by Google

2022 ChatGPT for generating text, DALL-E for generating images

https://www.youtube.com/watch?v=uocYQHOCWTs

1217125

https://www.youtube.com/watch?v=uocYQH0cWTs

How Did Google Miss the Boat?

Groundbreaking research by Google in the 2010’s to support language translation
Products focused on revenue-generating activities like web search and advertising
Worked on Al also to support device control

Did not focus on aggregating knowledge across web pages like ChatGPT, or did not
wish to risk existing revenue streams

https://www.reddit.com/r/MLQuestions/comments/18wc52b/why_isnt_google_ahead_of_the_competition_when_it/

1227125

https://www.reddit.com/r/MLQuestions/comments/18wc52b/why_isnt_google_ahead_of_the_competition_when_it/

The Future: Revolutionary Vision

A year ago, if you had said to me in our lifetime will we have capabilities like we have
today now with ChatGPT4 ... if you explain the kinds of things that ChatGPT4 can do I
probably would have said to you a year ago I don’t know if we will have those
capabilities in our lifetime — and now we have it today — so the speed at which this is
moving is staggering. — Jon Krohn, June 12, 2023

https://www.youtube.com/watch?v=Ku9PM26Cc2c&t=2h12m57s
https://neurosciencenews.com/ai-existential-threat-27543/

1237125

https://www.youtube.com/watch?v=Ku9PM26Cc2c&t=2h12m57s
https://neurosciencenews.com/ai-existential-threat-27543/

The Future: Incremental Vision

We are used to the idea that people or entities that can express themselves, or manipulate
language, are smart — but that’s not true. You can manipulate language and not be
smart, and that’s basically what LLMs (large language models) are demonstrating. —
Yann LeCun, October 11, 2024

https://www.linkedin.com/posts/yann-lecun_an-article-in-the-wall-street-journal-in-activity-7250915579228827648-WWA2/
https://www.msn.com/en-1in/money/news/why-were-unlikely-to-get-artificial-general-intelligence-anytime-soon/ar-AAlEWydy

https://www.theatlantic.com/culture/archive/2025/06/artificial-intelligence-illiteracy/683021/

1247125

https://www.linkedin.com/posts/yann-lecun_an-article-in-the-wall-street-journal-in-activity-7250915579228827648-WWA2/
https://www.msn.com/en-in/money/news/why-were-unlikely-to-get-artificial-general-intelligence-anytime-soon/ar-AA1EWy4y
https://www.theatlantic.com/culture/archive/2025/06/artificial-intelligence-illiteracy/683021/

Conclusion

24017301626 14elfa2565 c.jpg

El,:.,ﬁlil
*ﬁ hitps://momjian.us/presentations bttps:/jwwwflickr.comfphotosidavep-uk!
mE
125/125

