
The Wonderful World of WAL

BRUCE MOMJIAN

The write-ahead log, or WAL, provides key features of Postgres, which are covered by
this presentation.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: November 2025

1 / 125



Outline

1. Inside the write-ahead log (WAL)

2. Crash recovery

3. Point-in-time recovery

4. Streaming binary replication

5. Logical replication

6. Replication slots

2 / 125



1. Inside the Write-Ahead Log (WAL): History

• 2001 (PG 7.1): Write-ahead log

• 2005 (PG 8.0): Point-in-time recovery

• 2010 (PG 9.0): Streaming binary replication

• 2017 (PG 10): Logical replication and replication slots

https://bucardo.org/postgres_all_versions

3 / 125

https://bucardo.org/postgres_all_versions


Install pg_walinspect

CREATE EXTENSION IF NOT EXISTS pg_walinspect;

https://www.postgresql.org/docs/current/pgwalinspect.html

4 / 125

https://www.postgresql.org/docs/current/pgwalinspect.html


Create Function to Remap Resource_Manager

-- adjust resource_manager for historical names
CREATE FUNCTION remap_resource_manager(resource_manager TEXT)
RETURNS TEXT AS
$$

SELECT CASE resource_manager
WHEN ’CLOG’ THEN ’Pg_xact’
WHEN ’XLOG’ THEN ’Pg_wal’
ELSE resource_manager
END

$$ LANGUAGE SQL;

5 / 125



Pg_walinspect with resource_manager

-- adjust resource_manager for historical names
WITH wal_records AS (

SELECT remap_resource_manager(resource_manager) AS res_manager,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(’0/01000000’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1

)
SELECT res_manager,

count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager;

6 / 125



Output of Pg_walinspect with resource_manager

res_manager | count | % | size%
-------------+-------+------+-------
Btree | 15118 | 57.7 | 12.9
Database | 3 | 0.0 | 0.0
Heap | 5638 | 21.5 | 15.9
Heap2 | 2686 | 10.3 | 17.1
Pg_wal | 1263 | 4.8 | 52.0
Pg_xact | 1 | 0.0 | 0.0
RelMap | 1 | 0.0 | 0.0
Standby | 414 | 1.6 | 0.2
Storage | 310 | 1.2 | 0.1
Transaction | 756 | 2.9 | 1.7

7 / 125



Pg_walinspect with added record_type

-- add record_type
WITH wal_records AS (

SELECT remap_resource_manager(resource_manager) AS res_manager,
record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(’0/01000000’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

8 / 125



Pg_walinspect: Btree

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Btree | DEDUP | 50 | 0.2 | 0.0
Btree | DELETE | 9 | 0.0 | 0.0
Btree | INSERT_LEAF | 14888 | 56.8 | 11.9
Btree | INSERT_UPPER | 43 | 0.2 | 0.0
Btree | NEWROOT | 30 | 0.1 | 0.0
Btree | SPLIT_L | 15 | 0.1 | 0.4
Btree | SPLIT_R | 38 | 0.1 | 0.5
Btree | VACUUM | 45 | 0.2 | 0.0

9 / 125



Pg_walinspect: Database

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Database | CREATE_FILE_COPY | 2 | 0.0 | 0.0
Database | CREATE_WAL_LOG | 1 | 0.0 | 0.0

10 / 125



Pg_walinspect: Heap

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Heap | DELETE | 37 | 0.1 | 0.0
Heap | HOT_UPDATE | 393 | 1.5 | 0.4
Heap | INPLACE | 211 | 0.8 | 0.8
Heap | INSERT | 4326 | 16.5 | 9.1
Heap | INSERT+INIT | 156 | 0.6 | 1.5
Heap | LOCK | 258 | 1.0 | 2.8
Heap | UPDATE | 239 | 0.9 | 1.1
Heap | UPDATE+INIT | 18 | 0.1 | 0.2

11 / 125



Pg_walinspect: Heap2

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Heap2 | MULTI_INSERT | 1665 | 6.4 | 2.6
Heap2 | MULTI_INSERT+INIT | 52 | 0.2 | 0.6
Heap2 | PRUNE_ON_ACCESS | 269 | 1.0 | 0.1
Heap2 | PRUNE_VACUUM_CLEANUP | 49 | 0.2 | 0.0
Heap2 | PRUNE_VACUUM_SCAN | 256 | 1.0 | 0.3
Heap2 | VISIBLE | 395 | 1.5 | 13.4

“Heap2” is the same as “Heap” and is used to support additional heap record types.

12 / 125



Pg_walinspect: Pg_wal

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Pg_wal | CHECKPOINT_ONLINE | 4 | 0.0 | 0.0
Pg_wal | CHECKPOINT_REDO | 4 | 0.0 | 0.0
Pg_wal | CHECKPOINT_SHUTDOWN | 3 | 0.0 | 0.0
Pg_wal | FPI | 1106 | 4.2 | 42.5
Pg_wal | FPI_FOR_HINT | 142 | 0.5 | 9.5
Pg_wal | NEXTOID | 4 | 0.0 | 0.0

13 / 125



Pg_walinspect: Pg_xact

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Pg_xact | ZEROPAGE | 1 | 0.0 | 0.0
Pg_xact | ZEROPAGE | 1 | 0.0 | 0.0

14 / 125



Pg_walinspect: RelMap

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
RelMap | UPDATE | 1 | 0.0 | 0.0

15 / 125



Pg_walinspect: Standby

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Standby | INVALIDATIONS | 139 | 0.5 | 0.1
Standby | LOCK | 271 | 1.0 | 0.1
Standby | RUNNING_XACTS | 4 | 0.0 | 0.0

16 / 125



Pg_walinspect: Storage

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Storage | CREATE | 310 | 1.2 | 0.1

17 / 125



Pg_walinspect: Transaction

res_manager | record_type | count | % | size%
-------------+----------------------+-------+------+-------
Transaction | COMMIT | 756 | 2.9 | 1.7

18 / 125



CREATE TABLE

-- lsn (log sequence numbers) values represent locations in the WAL

SELECT pg_current_wal_lsn() AS start_lsn
\gset

-- PRIMARY KEY creates an index
CREATE TABLE wal_test (x INTEGER PRIMARY KEY);

19 / 125



WAL Records for CREATE TABLE

-- uses psql variable start_lsn
WITH wal_records AS (

SELECT remap_resource_manager(resource_manager) AS res_manager,
record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

20 / 125



WAL Records for CREATE TABLE

res_manager | record_type | count | % | size%
-------------+-----------------+-------+------+-------
Btree | INSERT_LEAF | 50 | 63.3 | 41.9
Heap | INPLACE | 2 | 2.5 | 6.3
Heap | INSERT | 7 | 8.9 | 17.2
Heap2 | MULTI_INSERT | 9 | 11.4 | 19.4
Heap2 | PRUNE_ON_ACCESS | 5 | 6.3 | 3.1
Pg_wal | FPI | 1 | 1.3 | 1.7
Standby | LOCK | 2 | 2.5 | 1.0
Storage | CREATE | 2 | 2.5 | 1.0
Transaction | COMMIT | 1 | 1.3 | 8.4

21 / 125



INSERT

SELECT pg_current_wal_lsn() AS start_lsn
\gset

INSERT INTO wal_test VALUES (1);

22 / 125



WAL Records for INSERT

WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,

record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

23 / 125



WAL Records for INSERT

res_manager | record_type | count | % | size%
-------------+-------------+-------+------+-------
Btree | INSERT_LEAF | 1 | 25.0 | 25.9
Btree | NEWROOT | 1 | 25.0 | 36.4
Heap | INSERT+INIT | 1 | 25.0 | 23.9
Transaction | COMMIT | 1 | 25.0 | 13.8

24 / 125



UPDATE

SELECT pg_current_wal_lsn() AS start_lsn
\gset

UPDATE wal_test SET x = 2;

25 / 125



WAL Records for UPDATE

WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,

record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

26 / 125



WAL Records for UPDATE

res_manager | record_type | count | % | size%
-------------+-------------+-------+------+-------
Btree | INSERT_LEAF | 1 | 33.3 | 38.3
Heap | UPDATE | 1 | 33.3 | 41.3
Transaction | COMMIT | 1 | 33.3 | 20.4

27 / 125



DELETE

SELECT pg_current_wal_lsn() AS start_lsn
\gset

DELETE FROM wal_test;

28 / 125



WAL Records for DELETE

WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,

record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

29 / 125



WAL Records for DELETE

res_manager | record_type | count | % | size%
-------------+-------------+-------+------+-------
Heap | DELETE | 1 | 50.0 | 61.4
Transaction | COMMIT | 1 | 50.0 | 38.6

30 / 125



DROP TABLE

SELECT pg_current_wal_lsn() AS start_lsn
\gset

DROP TABLE wal_test;

31 / 125



WAL Records for DROP TABLE

WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,

record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

32 / 125



WAL Records for DROP TABLE

res_manager | record_type | count | % | size%
-------------+-----------------+-------+------+-------
Heap | DELETE | 21 | 84.0 | 57.6
Heap2 | PRUNE_ON_ACCESS | 1 | 4.0 | 2.9
Standby | LOCK | 2 | 8.0 | 4.3
Transaction | COMMIT | 1 | 4.0 | 35.2

33 / 125



INSERT a Second Row

CREATE TABLE wal_test (x INTEGER PRIMARY KEY);
INSERT INTO wal_test VALUES (1);

SELECT pg_current_wal_lsn() AS start_lsn
\gset

INSERT INTO wal_test VALUES (2);

34 / 125



WAL Records for Second INSERT

WITH wal_records AS (
SELECT remap_resource_manager(resource_manager) AS res_manager,

record_type,
COUNT(*) AS count,
SUM(record_length) as size

FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
GROUP BY 1, 2

)
SELECT res_manager,

record_type,
count,
round(count * 100.0 / (SUM(count) OVER ()), 1) AS "%",
round(size * 100.0 / (SUM(size) OVER ()), 1) AS "size%"

FROM wal_records
ORDER BY res_manager, record_type;

35 / 125



WAL Records for Second INSERT

res_manager | record_type | count | % | size%
-------------+-------------+-------+------+-------
Btree | INSERT_LEAF | 1 | 33.3 | 40.8
Heap | INSERT | 1 | 33.3 | 37.6
Transaction | COMMIT | 1 | 33.3 | 21.7

36 / 125



Detailed WAL Records for Second INSERT

\x

SELECT *
FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
ORDER BY start_lsn;

37 / 125



WAL Record #1

-[ RECORD 1 ]----+------------------------------------------------
start_lsn | 0/01BB8540
end_lsn | 0/01BB8580
prev_lsn | 0/01BB8518
xid | 766
resource_manager | Heap
record_type | INSERT
record_length | 59
main_data_length | 3
fpi_length | 0
description | off: 2, flags: 0x00
block_ref | blkref #0: rel 1663/16384/16399 fork main blk 0

38 / 125



WAL Record #2

-[ RECORD 2 ]----+------------------------------------------------
start_lsn | 0/01BB8580
end_lsn | 0/01BB85C0
prev_lsn | 0/01BB8540
xid | 766
resource_manager | Btree
record_type | INSERT_LEAF
record_length | 64
main_data_length | 2
fpi_length | 0
description | off: 2
block_ref | blkref #0: rel 1663/16384/16403 fork main blk 1

39 / 125



WAL Record #3

-[ RECORD 3 ]----+------------------------------------------------
start_lsn | 0/01BB85C0
end_lsn | 0/01BB85E8
prev_lsn | 0/01BB8580
xid | 766
resource_manager | Transaction
record_type | COMMIT
record_length | 34
main_data_length | 8
fpi_length | 0
description | 2025-10-31 19:00:00.978944-04
block_ref |

40 / 125



More Detailed WAL Record #1

SELECT *
FROM pg_get_wal_block_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
ORDER BY start_lsn
LIMIT 1;

41 / 125



More Detailed WAL Record #1

-[ RECORD 1 ]-----+-----------------------
start_lsn | 0/01BB8540
end_lsn | 0/01BB8580
prev_lsn | 0/01BB8518
block_id | 0
reltablespace | 1663
reldatabase | 16384
relfilenode | 16399
relforknumber | 0
relblocknumber | 0
xid | 766
resource_manager | Heap
record_type | INSERT
record_length | 59
main_data_length | 3
block_data_length | 10
block_fpi_length | 0
block_fpi_info | (null)
description | off: 2, flags: 0x00
block_data | \x01000008180002000000
block_fpi_data |

42 / 125



Logical Replication Adds WAL Record #4

ALTER SYSTEM SET wal_level = ’logical’;

$ pg_ctl restart

SELECT pg_current_wal_lsn() AS start_lsn
\gset

INSERT INTO wal_test values (3);

\x

SELECT *
FROM pg_get_wal_records_info(:’start_lsn’, ’FFFFFFFF/FFFFFFFF’)
ORDER BY start_lsn;

43 / 125



Logical Replication Adds WAL Record #4

-[ RECORD 4 ]----+--------------------------------------------------------
start_lsn | 0/01BC09D0
end_lsn | 0/01BC0A08
prev_lsn | 0/01BC09A0
xid | 0
resource_manager | Standby
record_type | RUNNING_XACTS
record_length | 50
main_data_length | 24
fpi_length | 0
description | nextXid 770 latestCompletedXid 769 oldestRunningXid 770
block_ref |

44 / 125



Generative AI Use Cases

• Text
• chatbots
• semantic/vector search
• summarization
• language translation

• Image/audio/video creation and search

• Software
• code creation
• code analysis
• data analysis
• programming language conversion *
• natural language interface for tasks previously requiring specialized software

https://www.turing.com/resources/generative-ai-applications

https://www.youtube.com/watch?v=zjkBMFhNj_g
* https://www.codeconvert.ai/

45 / 125

https://www.turing.com/resources/generative-ai-applications
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://www.codeconvert.ai/


Discriminative and Generative AI Compared

Discriminative Generative

supervised learning requires training outcomes determined from

data with known outcomes massive training data

often problem-domain specific usually general

output is a determination/prediction output is new content

Discriminative unsupervised learning is similar to generative because it does not include

known outcomes.

46 / 125



Discriminative and Generative AI Compared

A generative algorithm models how the data was "generated", so you ask it "what’s the
likelihood this or that class generated this instance?" and pick the one with the better
probability. A discriminative algorithm uses the data to create a decision boundary, so
you ask it "what side of the decision boundary is this instance on?" So it doesn’t create a
model of how the data was generated, it makes a model of what it thinks the boundary
between classes looks like. – Anthony, Pittsburgh

https://stackoverflow.com/questions/879432/what-is-the-difference-between-a-generative-and-a-discriminative-algorithm

47 / 125

https://stackoverflow.com/questions/879432/what-is-the-difference-between-a-generative-and-a-discriminative-algorithm


Discriminative Boundary

boundary.eps

They focus on boundaries between groups.

https://solutionshub.epam.com/blog/post/generative-ai-vs-predictive-ai

48 / 125

https://solutionshub.epam.com/blog/post/generative-ai-vs-predictive-ai


Generative Vectors

vector.eps

The color of the arrows is meant to represent an aspect of the word, or an aspect of how

the word appeared in the training data. It focuses on relationships between items.

49 / 125



2. Hyper-Dimensional Vectors: Math

Mathematics allows the representation of concepts that can’t be represented in the real

world:

• Numbers greater than the number of atoms in the universe (1080)

• Infinity (∞)

• Function derivatives calculate slopes using infinitesimally small adjustments

• Function integration involves the infinite sum of infinitesimally small areas

50 / 125



Duality

Mathematics allows concepts to be represented in multiple forms. For example, vectors
can be thought of as representing the

• Physical world

• Computer science arrays

• Abstract representations

https://en.wikipedia.org/wiki/Duality_(mathematics)

51 / 125

https://en.wikipedia.org/wiki/Duality_(mathematics)


Hyper-Dimensional Vectors

hyper-vector.eps

Mathematics allows vectors in dimensions beyond the three-dimensional world to be

used for AI. This is a two-dimensional image represents 10 dimensions. ChatGPT3’s

text embedding vectors can use 1024 to 12288 dimensions, meaning the image above

would require 100-1,200 times more nesting.
https://community.openai.com/t/what-version-of-gpt-is-text-embedding-ada-002-based-on/404462

52 / 125

https://community.openai.com/t/what-version-of-gpt-is-text-embedding-ada-002-based-on/404462


Hyper-Dimensional Vector Range

hyper-vector.eps

Each axis is typically a 4-byte floating point number. With 1k-12k dimensions, that

yields a total range of 109kto 10118kvalues, far more than the number of atoms in the

universe. (Even if we use only 4-byte floats between ±1, and adjusting the the limited

use of bits by floating point numbers, the minimum range is still 108k.)
https://stackoverflow.com/questions/7744016/how-many-distinct-values-can-be-stored-in-floating-point-formats

53 / 125

https://stackoverflow.com/questions/7744016/how-many-distinct-values-can-be-stored-in-floating-point-formats


Hyper-Dimensional Vector Magnitude

hyper-vector.eps

Notice that each vector has the same length or magnitude.

https://postgresml.org/docs/open-source/pgml/guides/embeddings/vector-normalization
https://stackoverflow.com/questions/10002918/what-is-the-need-for-normalizing-a-vector

54 / 125

https://postgresml.org/docs/open-source/pgml/guides/embeddings/vector-normalization
https://stackoverflow.com/questions/10002918/what-is-the-need-for-normalizing-a-vector


3. Training Text Embeddings

To train generative AI
1. Create vectors

• one for each English word/token (30-50k)
• words can be added automatically
• tokenizers can also be made up by letter combinations (byte-pair based, ideal for rare

words and proper nouns)
• assign each vector the same fixed length/magnitude (normalized vectors)
• assign each vector a random direction in the 1k-12k dimensional space

2. Adjust the direction of vectors using a massive number of training documents (e.g.,
word2vec) by either

• for each word, adjust its vector to be closer to the vectors of surrounding words, e.g.,
bag of words

• for each word, adjust the vectors of surrounding words to be closer its vector, e.g.,
skip-gram

https://neptune.ai/blog/vectorization-techniques-in-nlp-guide

https://jalammar.github.io/illustrated-word2vec/

https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://medium.com/@aidant0001/unraveling-the-magic-of-word-embeddings-1f6fac66c647

55 / 125

https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://jalammar.github.io/illustrated-word2vec/
https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://medium.com/@aidant0001/unraveling-the-magic-of-word-embeddings-1f6fac66c647


Text Embeddings with Random Directions

embedding.eps

https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/

56 / 125

https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/


Training Example

For the training text:

The king is a tall man.

we move each red word closer to the blue words, or the blue words closer to the red

word (depending on the training method):

1. The king is a tall man.

2. The king is a tall man.

3. The king is a tall man.

4. The king is a tall man.

5. The king is a tall man.

6. The king is a tall man.

https://towardsdatascience.com/word2vec-out-of-the-black-box-a404b4119681

57 / 125

https://towardsdatascience.com/word2vec-out-of-the-black-box-a404b4119681


Training Example

For the training text:

The king is a tall man. The queen is a beautiful woman. They sit together in the
throne room of the castle.

we have

• “king” getting closer to “man”

• “tall” getting closer to “man” and “king”

• “queen” getting closer to “woman”

• “beautiful” getting closer to “woman” and “queen”

• “throne” getting closer to “castle”

• “king”, “man” “queen”, “woman” getting closer to “throne” and “castle” (spans

sentences)

58 / 125



Training Example

• phrases and minor words also move closer to each other, e.g.,
• “The” is closer to “king”
• “throne” is closer to “room”
• “throne” and “room” are closer to “castle”

Consider there are 1-12 thousand dimensions, so moving words closer in one

dimension might not affect closeness in other dimensions.

59 / 125



Text Embeddings with Learned Directions

King - Man + Woman = Queen

Woman - Man + King = Queen

embedding2.eps

https://jalammar.github.io/illustrated-word2vec/
https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained

60 / 125

https://jalammar.github.io/illustrated-word2vec/
https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained


Text Embeddings

chatgpt_embedding.jpg

61 / 125



4. Semantic/Vector Search

Postgres has supported full text/phrase search since 2003, but that only finds

base/stemmed words. It has no concept of synonyms (except those explicitly configured)

or word relationships. As you can imagine from our previous slides, semantic/vector

search promises much richer search capabilities. Full text/phrase search is better for

precise queries and handles proper nouns better. It is possible to use a hybrid search

which combines full text/phrase search and semantic/vectors search.

https://blog.meilisearch.com/full-text-search-vs-vector-search/
https://www.youtube.com/watch?v=P5VpaUyh8Iw

62 / 125

https://blog.meilisearch.com/full-text-search-vs-vector-search/
https://www.youtube.com/watch?v=P5VpaUyh8Iw 


Semantic/Vector Search Setup

1. Download a pre-trained text embedding, or create your own

2. Choose a chunk size (sentence, paragraph, section, page, document)

3. Find text embedding vectors of all words (or byte pairs) in the chunk

4. Average the vectors

5. Store them in the database along with the chunk

https://qdrant.tech/articles/what-is-rag-in-ai/

https://zilliz.com/learn/guide-to-chunking-strategies-for-rag
https://ragaboutit.com/the-definitive-guide-to-document-chunking-for-ai-applications/

63 / 125

https://qdrant.tech/articles/what-is-rag-in-ai/
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag
https://ragaboutit.com/the-definitive-guide-to-document-chunking-for-ai-applications/


Semantic/Vector Search

1. Find text embedding vectors of all words in the query

2. Average the vectors

3. Search for the closest (nearest neighbor) vectors in the database and return their

chunks

https://www.couchbase.com/blog/what-is-vector-search/

64 / 125

https://www.couchbase.com/blog/what-is-vector-search/


Search Setup Example

Assume you wish to index this document using semantic/vector search:

The king is a tall man. The queen is a beautiful woman. They sit together in the
throne room of the castle.

If you choose a chunk size of sentences, you will store and index:

1. The king is a tall man. (average 6 vectors)

2. The queen is a beautiful woman. (average 6 vectors)

3. They sit together in the throne room of the castle. (average 10 vectors)

65 / 125



Search Example

A search of:
Who is the king?

will find the text embedding vectors of the query words, average them, and find the

closest (nearest neighbor) stored vector which is this chunk:

The king is a tall man.

66 / 125



Example: Install pgvector

CREATE EXTENSION IF NOT EXISTS vector;

Pgvector can be found at https://github.com/pgvector/pgvector. All queries in this presentation
can be downloaded from https://momjian.us/main/writings/pgsql/trenches.sql.

67 / 125

https://github.com/pgvector/pgvector
https://momjian.us/main/writings/pgsql/trenches.sql


Create Table to Store Documents and Vectors

CREATE TABLE document (
id SERIAL PRIMARY KEY,
content TEXT NOT NULL

);

CREATE TABLE document_embedding (
id INTEGER PRIMARY KEY,
-- ChatGPT4’s text embedding vectors have 1536 dimensions
embedding vector(1536) NOT NULL

);

Example based on the URL at the bottom right.

https://www.enterprisedb.com/blog/what-is-pgvector

68 / 125

https://www.enterprisedb.com/blog/what-is-pgvector


Populate Document Table

INSERT INTO document (content) VALUES
(’The king is a tall man.’),
(’The queen is a beautiful woman.’),
(’They sit together in the throne room of the castle.’);

-- It is performant to create HNSW indexes on empty tables, unlike IVFFlat.
-- https://www.cybertec-postgresql.com/en/indexing-vectors-in-postgresql/
CREATE INDEX document_embedding_embedding_idx ON document_embedding

USING hnsw (embedding vector_l2_ops);

69 / 125

https://www.cybertec-postgresql.com/en/indexing-vectors-in-postgresql/


Populate Text Embedding

#! /usr/bin/env python

""" Add document embeddings to the vector search table """

import os
import sys
from openai import OpenAI
import psycopg

if len(sys.argv) != 1:
print("Usage: " + os.path.basename(__file__), file=sys.stderr)
sys.exit(1)

# Get OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# Specify the embedding model
MODEL_ID = "text-embedding-ada-002"

70 / 125



Populate Text Embedding

# Connect to the database
conn = psycopg.connect("host=localhost port=5432 dbname=ai user=postgres")

# Fetch documents
cur = conn.cursor()
cur.execute("SELECT id, content FROM document")

# Create embeddings for each document and store in the database
for doc_id, doc_content in cur.fetchall():

embedding = (
client.embeddings.create(input=doc_content, model=MODEL_ID).data[0].embedding

)
cur.execute(

"""
INSERT INTO document_embedding (id, embedding)
VALUES (%s, %s);""",

(doc_id, embedding),
)

# Commit and close the database connection
conn.commit()
conn.close()

71 / 125



Embeddings Stored

-- show embeddings for documents
SELECT content,

substring(embedding::text, 1, 30) AS embedding
FROM document JOIN document_embedding USING (id);

content | embedding
-----------------------------------------------------+---------------------------------
The king is a tall man. | [0.004228712,-0.0132633485,0.0…
The queen is a beautiful woman. | [-0.006298352,0.008259722,-0.0…
They sit together in the throne room of the castle. | [0.01191413,-0.03098976,-0.010…

-- each dimension is four bytes (float4)
SELECT pg_column_size(embedding),

pg_column_size(embedding) / 1536 AS bytes_per_dim
FROM document_embedding;
pg_column_size | bytes_per_dim
----------------+---------------

6148 | 4
6148 | 4
6148 | 4

72 / 125



Query Text Embedding

#! /usr/bin/env python

""" Perform vector search of documents """

import os
import sys
from openai import OpenAI
import psycopg

if len(sys.argv) != 2:
print("Usage: " + os.path.basename(__file__) + " search_string", file=sys.stderr)
sys.exit(1)

# Get the user query
search = sys.argv[1]

# Get OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# Specify the embedding model
MODEL_ID = "text-embedding-ada-002"

73 / 125



Query Text Embedding

# Get embedding for the user query
embedding = client.embeddings.create(input=search, model=MODEL_ID).data[0].embedding

# Connect to the database
conn = psycopg.connect("host=localhost port=5432 dbname=ai user=postgres")

# Fetch documents in order of their vector search similarity to the user query
cur = conn.cursor()
cur.execute(

"""
SELECT content, embedding <-> %s::vector
FROM document JOIN document_embedding USING (id)
ORDER BY 2;""",

(embedding,),
)

# Output documents ordered by similarity
for doc_content, distance in cur.fetchall():

print(f"{doc_content:<52} {distance}")

# Commit and close the database connection
conn.commit()
conn.close()

74 / 125



Query Examples

-- This is matching a word, so it could have been done with full text search.
Who is the king?
The king is a tall man. 0.6235435682429836
The queen is a beautiful woman. 0.6943989871300065
They sit together in the throne room of the castle. 0.7003168615080256

-- same
Who is tall?
The king is a tall man. 0.6273594902980766
They sit together in the throne room of the castle. 0.6957198032305553
The queen is a beautiful woman. 0.7227548068086962

75 / 125



Query Examples

-- The vector for "short" is near "tall".
Who is short?
The king is a tall man. 0.6878928016051950
The queen is a beautiful woman. 0.7552441994053801
They sit together in the throne room of the castle. 0.7593614930258540

-- The vector for "pretty" is near "beautiful".
Who is pretty?
The queen is a beautiful woman. 0.6579895352151753
They sit together in the throne room of the castle. 0.7473554877225373
The king is a tall man. 0.7480856783292117

-- The vector for "palace" is near "castle".
Who is in the palace?
They sit together in the throne room of the castle. 0.5872522481044645
The king is a tall man. 0.6646927703591086
The queen is a beautiful woman. 0.6908769898680150

-- The vector for "chair" is near "sit".
Where is the chair?
They sit together in the throne room of the castle. 0.6865519576029434
The king is a tall man. 0.7417508497217221
The queen is a beautiful woman. 0.7578119887517404

76 / 125



5. Transformers

Transformers allow the embedding vectors just shown and attention blocks to generate

output. While images and videos can also be created, this presentation will focus on text

generation. How is this done?

1. Load the first attention block with the text embedding vectors of the words used in

the user query

2. Adjust vectors to be closer to previous words/vectors

3. Repeat step 2 several times

4. Find the word closest to the last vector, and use it as the first output word

5. Repeat step 2 and later to get successive words

https://medium.com/@RobinVetsch/nlp-from-word-embedding-to-transformers-76ae124e6281
https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190

77 / 125

https://medium.com/@RobinVetsch/nlp-from-word-embedding-to-transformers-76ae124e6281
https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190


Attention Block Details

• Shown are self-attention blocks:
• only previous vectors affect current vectors, not later ones
• used to generate new words
• translation uses cross-attention blocks where later vectors can also affect earlier ones

• While the following slides show attention block 1 in seven steps, attention blocks
do vector calculations in parallel as matrix multiplication

• GPUs are very efficient at matrix multiplication
• internally uses a query/key/value process

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://www.youtube.com/watch?v=4naXLhVfeho
https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms

78 / 125

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://www.youtube.com/watch?v=4naXLhVfeho
https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms


Attention Block Details

• While text embedding vectors can be thousands of dimensions, attention blocks
usually use one-tenth the number of dimensions:

• GPT-3 uses 96 attention blocks with 128-dimension vectors

• Shown is zero-shot learning
• some models use single or multi-shot learning, e.g., “The capital of Spain is Madrid.”

is prepended to the user query

• Not shown
• word positions are numbered in the attention vectors
• sentence endings are also encoded; this is shown as “?”
• used for sentence construction

https://aigrowthguys.com/zero-shot-vs-multi-shot-prompting-prompt-engineering/
https://datascience.stackexchange.com/questions/118273/specifics-about-chatgpts-architecture

79 / 125

https://aigrowthguys.com/zero-shot-vs-multi-shot-prompting-prompt-engineering/
https://datascience.stackexchange.com/questions/118273/specifics-about-chatgpts-architecture


Populate Initial Attention Block

transformer1_1.eps

80 / 125



Current Attention Block Vectors

1. “What”

2. “is”

3. “the”

4. “capital”

5. “of”

6. “France”

7. “?”

81 / 125



Adjust the Second Vector

transformer1_2.eps

82 / 125



Current Attention Block Vectors

1. “What”

2. “What” “is”

3. “the”

4. “capital”

5. “of”

6. “France”

7. “?”

83 / 125



Matrix Mask Prevents Adjustments from Later Words/Vectors

Words What is the capital of France ?

What 1 0 0 0 0 0 0

is 1 1 0 0 0 0 0

the 1 1 1 0 0 0 0

capital 1 1 1 1 0 0 0

of 1 1 1 1 1 0 0

France 1 1 1 1 1 1 0

? 1 1 1 1 1 1 1

84 / 125



Adjust Vector 3

transformer1_3.eps

85 / 125



Current Attention Block Vectors

1. “What”

2. “What” “is”

3. “What” “is” “the”

4. “capital”

5. “of”

6. “France”

7. “?”

86 / 125



Adjust Vector 4

transformer1_4.eps

87 / 125



Current Attention Block Vectors

1. “What”

2. “What is”

3. “What” “is” “the”

4. “What” “is” “the” “capital”

5. “of”

6. “France”

7. “?”

88 / 125



Adjust Vector 5

transformer1_5.eps

89 / 125



Adjust Vector 6

transformer1_6.eps

90 / 125



Adjust Vector 7

transformer1_7.eps

91 / 125



End of Attention Block 1 Vectors

1. “What”

2. “What” “is”

3. “What” “is” “the”

4. “What” “is” “the” “capital”

5. “What” “is” “the” “capital” “of”

6. “What” “is” “the” “capital” “of” “France”

7. “What” “is” “the” “capital” “of” “France” “?”

92 / 125



Attention Block Details

• Each vector of an attention block potentially can be moved closer to other vectors,
except the first vector:

• this is the “attention” aspect of attention blocks

• Vectors are normalized to maintain the same magnitude

• Vector movement is not uniform
• movement favors dimensionally-close vectors and previous movement

(backpropagation)
• distances are computed via vector dot products

https://www.datacamp.com/blog/attention-mechanism-in-llms-intuition

93 / 125

https://www.datacamp.com/blog/attention-mechanism-in-llms-intuition


Continue Running Attention Blocks

transformer2+.eps

The next attention block uses vectors that were adjusted by the previous attention block. The headings are
now labeled as “vectors” because they no longer point to the original words of the user query.

94 / 125



End of Attention Block 2 Vectors

1. (“What”)

2. (“What”)×(“What” “is”)

3. (“What”)×(“What” “is”)×(“What” “is” “the”)

4. (“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)

5. (“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”
“capital”)×(“What” “is” “the” “capital” “of”)

6. (“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”

“capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the” “capital” “of”

“France”)

7. (“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”

“capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the” “capital” “of”

“France”)×(“What” “is” “the” “capital” “of” “France” “?”)

95 / 125



End of Attention Block 3 Vectors

1. (“What”)

2. (“What”)×((“What”)×(“What” “is”))

3. ((“What”)×(“What” “is”))×((“What”)×(“What” “is”)×(“What” “is” “the”))

4. ((“What”)×(“What” “is”)×(“What” “is” “the”))×((“What”)×(“What” “is”)×(“What” “is”
“the”)×(“What” “is” “the” “capital”))

5. ((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”))×((“What”)×(“What”
“is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”))

6. ((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the”
“capital” “of”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”
“capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the” “capital” “of” “France”))

7. ((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the”
“capital” “of”)×(“What” “is” “the” “capital” “of” “France”))×((“What”)×(“What” “is”)×(“What”
“is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the”
“capital” “of” “France”)×(“What” “is” “the” “capital” “of” “France” “?”))

96 / 125



End of Attention Block 4 Vectors

1. (“What”)

2. (“What”)×(“What”)×((“What”)×(“What” “is”))

3. (“What”)×((“What”)×(“What” “is”))×((“What”)×(“What” “is”))×((“What”)×(“What” “is”)×(“What” “is” “the”))

4. ((“What”)×(“What” “is”))×((“What”)×(“What” “is”)×(“What” “is” “the”))×((“What”)×(“What” “is”)×(“What” “is” “the”))×((“What”)×(“What”
“is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”))

5. ((“What”)×(“What” “is”)×(“What” “is” “the”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”
“capital”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”))×((“What”)×(“What” “is”)×(“What” “is”
“the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”))

6. ((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the”
“capital”)×(“What” “is” “the” “capital” “of”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the”
“capital” “of”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is”
“the” “capital” “of” “France”))

7. ((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”))×((“What”)×(“What”
“is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the” “capital” “of”
“France”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital” “of”)×(“What” “is” “the”
“capital” “of” “France”))×((“What”)×(“What” “is”)×(“What” “is” “the”)×(“What” “is” “the” “capital”)×(“What” “is” “the” “capital”
“of”)×(“What” “is” “the” “capital” “of” “France”)×(“What” “is” “the” “capital” “of” “France” “?”))

97 / 125



After Running All Attention Blocks: Store and Output First Word

transformer_word1.eps

The last vector of the final attention block has dimensional values which represent the entire user query; its
position among other word vectors is used to generate answer text. AI chat apps usually display results one
word at a time because they generate results one word at a time.

https://jalammar.github.io/illustrated-transformer/
98 / 125

https://jalammar.github.io/illustrated-transformer/


Adjust the First Word

transformer_word1_attention.eps

Vectors only adjust to previous vectors, so only vector8 needs adjustment.

99 / 125



After Running All Attention Blocks Again:

Store and Output Second Word

transformer_word2.eps

100 / 125



Transformer Flow

transformer_flow.eps

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

101 / 125

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://www.elastic.co/search-labs/blog/generative-ai-transformers-explained
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html


6. Generative AI

Generated using large language model (LLM) ChatGPT4 o1-mini:

What is the capital of France?
The capital of France is Paris.

The capital of France is?
The capital of France is Paris.

Where is Paris?
Paris is the capital city of France, located in the north-central part of the country along

the Seine River. It is known for its rich history, art, culture, and landmarks such as the

Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.

https://dugas.ch/artificial_curiosity/GPT_architecture.html

102 / 125

https://dugas.ch/artificial_curiosity/GPT_architecture.html


Generative AI

Columbus is in Ohio. Where is Paris?
Paris is in France. There is also a city named Paris in the United States, located in Texas.

If you were referring to a different Paris, please specify!

I live in Texas. Where is Paris?
In Texas, there is a city named Paris, which is located in the northeastern part of the

state, in Lamar County. It is approximately 100 miles northeast of Dallas. There is also

a well-known city named Paris in France, which is the capital and largest city of the

country. If you’re referring to the Texas city, it’s known for its local attractions,
including the Eiffel Tower replica with a cowboy hat. If you meant the one in France,

it’s famous for its art, culture, and history.

103 / 125



7. Retrieval-Augmented Generation (RAG)

Retrieval-augmented generation (RAG) allows for data (below in red) to be passed to the

generative transformer to affect the user query (transformers can accept thousands of

words/tokens).

Where is paris?
Paris is the capital city of France, located in the northern part of the country along the

Seine River. It is known for its rich history, culture, art, and landmarks such as the Eiffel

Tower, the Louvre Museum, and Notre-Dame Cathedral.

reply briefly
Where is Paris?
Paris is the capital city of France, located in the north-central part of the country along

the Seine River.

https://www.youtube.com/watch?v=Y08Nn23o_mY
https://qdrant.tech/articles/what-is-rag-in-ai/

104 / 125

https://www.youtube.com/watch?v=Y08Nn23o_mY
https://qdrant.tech/articles/what-is-rag-in-ai/


RAG Internals

$ rag -n ’reply briefly’ ’Where is Paris?’
…
Payload:
--------------
{

"model": "gpt-4o-mini",
"stream": true,
"temperature": 0.5,
"max_tokens": 8192,
"messages": [
{

"role": "system"
"content": "reply briefly",

},
{

"role": "user",
"content": "Where is Paris?"

}
]

} 105 / 125



RAG

Columbus is in Ohio.
Where is Paris?
Paris is the capital city of France, located in the north-central part of the country along

the Seine River. It is known for its art, fashion, gastronomy, and culture, as well as

landmarks such as the Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.

I live in Texas.
Where is Paris?
Paris is the capital city of France, located in the north-central part of the country along

the Seine River. It is known for its rich history, culture, art, and landmarks such as the

Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral. If you meant a different

Paris, such as Paris, Texas, it is a city located in the northeastern part of the state of

Texas.

106 / 125



Data Can Be Passed via RAG

Using the following RAG data for each query:

{“order_id”: 735, “product”: "gears", “amount”: 21, “inv_date”: 2024-04-12}
{“order_id”: 4423, “product”: "pencils", “amount”: 13, “inv_date”: 2024-02-05}
{“order_id”: 1334, “product”: "glue", “amount”: 5, “inv_date”: 2024-03-25}

A more sophisticated example would be to first create a list of questions or keywords and

their relevant SQL queries. A semantic/vector search could then be performed on each

user query to choose the relevant SQL query, run it, and supply its output as RAG data.

107 / 125



Data Can Be Passed via RAG

When were the orders made?
The orders were made on the following dates:

1. Order ID 735: April 12, 2024

2. Order ID 4423: February 5, 2024

3. Order ID 1334: March 25, 2024

What is the earliest invoice?
The earliest invoice is for the product "pencils" with order_id 4423, dated February 5,

2024.

108 / 125



Data Can Be Passed via RAG

What is the total of all invoices?
To calculate the total of all invoices, we need to sum the amounts for each order:

1. Order 735: Amount = 21

2. Order 4423: Amount = 13

3. Order 1334: Amount = 5

Now, adding them together:

Total = 21 + 13 + 5 = 39

The total of all invoices is 39.

109 / 125



Data Can Be Passed via RAG

What is the average invoice amount?
To calculate the average invoice amount, we first need to sum the amounts from the
provided orders and then divide by the number of orders.

Here are the amounts from the orders:

- Order 735: 21

- Order 4423: 13

- Order 1334: 5

Now, let’s calculate the total amount:

Total amount = 21 + 13 + 5 = 39

Next, we count the number of orders, which is 3.

Now, we can calculate the average:
Average invoice amount = Total amount / Number of orders = 39 / 3 = 13

So, the average invoice amount is 13.

110 / 125



Complex Calculations Are Possible

Today is April 15, 2024. With 30-day payment expected, which invoices are overdue?
To determine which invoices are overdue as of April 15, 2024, we need to check the

invoice dates and see if they are more than 30 days old from the current date.

1. **Invoice for gears**:

- Inv Date: April 12, 2024

- Payment Due Date: May 12, 2024 (April 12 + 30 days)

- Status: Not overdue

2. **Invoice for pencils**:

- Inv Date: February 5, 2024

- Payment Due Date: March 6, 2024 (February 5 + 30 days)

- Status: Overdue

111 / 125



Complex Calculations Are Possible

3. **Invoice for glue**:

- Inv Date: March 25, 2024
- Payment Due Date: April 24, 2024 (March 25 + 30 days)

- Status: Not overdue

Based on this analysis, the only overdue invoice is for **pencils** (order_id 4423).

112 / 125



Complex Calculations Are Possible

What is the total of invoices that are not pencils?
To calculate the total of invoices that are not for pencils, we will look at the provided

orders and sum the amounts for each product except for pencils.

Here are the relevant orders:

1. Gears: 21
2. Glue: 5

Now, we add these amounts together:

21 (gears) + 5 (glue) = 26

Therefore, the total of invoices that are not for pencils is **26**.

113 / 125



Complex Calculations Are Possible

Today is April 15, 2024. What is the next expected order date?
Since today’s date is April 15, 2024, and the most recent order date in the provided data
is April 12, 2024, we can estimate the next expected order date by looking at the

pattern of previous orders. However, there is not enough information in the provided

data to determine a specific frequency or pattern of orders. If we assume that orders are

placed regularly, we can consider the time intervals between the previous orders:

1. Order on February 5, 2024

2. Order on March 25, 2024 (48 days after the previous order)

3. Order on April 12, 2024 (18 days after the previous order)

Given the decreasing intervals, it’s challenging to predict a specific date. However, if we

were to assume a similar timeframe, we could expect the next order to occur sometime
in the following weeks. A rough estimate might suggest the next order could be expected

around late April to early May 2024, but without a clear pattern, it remains uncertain.

114 / 125



SQL Queries Can Be Generated

What SQL query will generate the latest invoice date?
To generate the latest invoice date from a table (let’s assume the table is named

’invoices’), you can use the following SQL query:

```sql

SELECT MAX(inv_date) AS latest_invoice_date

FROM invoices;
```

This query uses the ’MAX()’ function to find the most recent date in the ’inv_date’

column, returning it as ’latest_invoice_date’. Make sure to replace ’invoices’ with the

actual name of your table if it’s different.

115 / 125



Data Can Be Taken from a Database

CREATE TABLE invoice (
order_id INTEGER PRIMARY KEY,
product TEXT NOT NULL,
amount NUMERIC(10,2),
inv_date DATE

);

INSERT INTO invoice VALUES
(735, ’gears’, 21, ’2024-04-12’),
(4423, ’pencils’, 13, ’2024-02-05’),
(1334, ’glue’, 5, ’2024-03-25’);

$ # This invoice list can be customized by customer.
$ rag "$(psql --tuples-only -c ’\

SELECT to_json(invoice.*) \
FROM invoice \
WHERE cust_id = 12;’ ai)" \

> ’How many invoices are there?’
There are three invoices.

116 / 125



8. Deployment

overview.eps

117 / 125



Relational Databases for Semantic/Vector Search & Generative AI

Section AI Feature Details DB Appropriateness

3 text embedding vector training batched changes, mostly static poor

4 semantic/vector search search existing database contents good

5 & 6 tranformers & generative AI billions of comparisons poor

7 retrieval-augmented generation (RAG) add details to user queries good

7 language queries on retrieved data supplied as JSON good

7 generate SQL queries natural language to SQL unknown*

data analysis regression and time series good

Relational databases continue to be appropriate for discriminative AI. AI tools can also

help with database migrations, e.g., Oracle to Postgres.

https://momjian.us/main/blogs/pgblog/2018.html#November_28_2018
* https://www.reddit.com/r/SQL/comments/127zawr/who_here_is_using_chatgpt_to_help_with_sql_code/

118 / 125

https://momjian.us/main/blogs/pgblog/2018.html#November_28_2018
https://www.reddit.com/r/SQL/comments/127zawr/who_here_is_using_chatgpt_to_help_with_sql_code/


Deployment Options

As you have seen, there are several options for using generative AI:
• Cloud service model, e.g., ChatGPT
• Self-managed model

• only publicly trained, e.g., Meta’s Llama
• publicly trained with private fine-tuningpre, e.g., domain-specific chat assistant

• locally trained public and private data sets, e.g., structured-wikipedia
• locally trained with only private data
• private training requires an open data model

• Hugging Face offers many pretrained models and public data sets
• most OpenAI models are not open*

• The above options can be augmented with local data, i.e., RAG; data derived from
• personal preferences
• relational data and supplied as JSON, e.g., PostgreSQL
• text retrieved either via full text/phrase search or semantic/vector search

https://zapier.com/blog/hugging-face/

https://www.infoworld.com/article/2338922/5-easy-ways-to-run-an-llm-locally.html

https://www.nature.com/articles/d41586-024-02998-y
* https://analyticsindiamag.com/ai-mysteries/6-open-source-models-from-openai/

119 / 125

https://zapier.com/blog/hugging-face/
https://www.infoworld.com/article/2338922/5-easy-ways-to-run-an-llm-locally.html
https://www.nature.com/articles/d41586-024-02998-y
https://analyticsindiamag.com/ai-mysteries/6-open-source-models-from-openai/


Postgres AI Solutions

• pgvector, already covered

• Tembo’s pg_vectorize

• EDB’s AI extension aidb (Pipelines)

• Timescale’s AI extension pgai

• PostgresML’s AI toolkit

• AI toolkits from cloud vendors

• Lantern Cloud

• Workik, PopSQL, and SQL AI SQL query generators

• Postgres.AI’s PostgreSQL chatbot

• DBtune for server parameter tuning

https://github.com/ftisiot/postgresql-ai-projects

120 / 125

https://github.com/ftisiot/postgresql-ai-projects


9. Conclusion

• Pre-computer philosophy

• 1950’s Turing test

• 1980’s Expert systems

• 1970’s - 1990’s AI winter

• 2010’s Robotics

• 2013 word2vec by Google

• 2017 Attention blocks by Google

• 2022 ChatGPT for generating text, DALL-E for generating images

https://www.youtube.com/watch?v=uocYQH0cWTs

121 / 125

https://www.youtube.com/watch?v=uocYQH0cWTs


How Did Google Miss the Boat?

• Groundbreaking research by Google in the 2010’s to support language translation

• Products focused on revenue-generating activities like web search and advertising

• Worked on AI also to support device control

• Did not focus on aggregating knowledge across web pages like ChatGPT, or did not

wish to risk existing revenue streams

https://www.reddit.com/r/MLQuestions/comments/18wc52b/why_isnt_google_ahead_of_the_competition_when_it/

122 / 125

https://www.reddit.com/r/MLQuestions/comments/18wc52b/why_isnt_google_ahead_of_the_competition_when_it/


The Future: Revolutionary Vision

A year ago, if you had said to me in our lifetime will we have capabilities like we have
today now with ChatGPT4 … if you explain the kinds of things that ChatGPT4 can do I
probably would have said to you a year ago I don’t know if we will have those
capabilities in our lifetime — and now we have it today — so the speed at which this is
moving is staggering. — Jon Krohn, June 12, 2023

https://www.youtube.com/watch?v=Ku9PM26Cc2c&t=2h12m57s
https://neurosciencenews.com/ai-existential-threat-27543/

123 / 125

https://www.youtube.com/watch?v=Ku9PM26Cc2c&t=2h12m57s
https://neurosciencenews.com/ai-existential-threat-27543/


The Future: Incremental Vision

We are used to the idea that people or entities that can express themselves, or manipulate
language, are smart — but that’s not true. You can manipulate language and not be
smart, and that’s basically what LLMs (large language models) are demonstrating. —
Yann LeCun, October 11, 2024

https://www.linkedin.com/posts/yann-lecun_an-article-in-the-wall-street-journal-in-activity-7250915579228827648-WWA2/

https://www.msn.com/en-in/money/news/why-were-unlikely-to-get-artificial-general-intelligence-anytime-soon/ar-AA1EWy4y

https://www.theatlantic.com/culture/archive/2025/06/artificial-intelligence-illiteracy/683021/

124 / 125

https://www.linkedin.com/posts/yann-lecun_an-article-in-the-wall-street-journal-in-activity-7250915579228827648-WWA2/
https://www.msn.com/en-in/money/news/why-were-unlikely-to-get-artificial-general-intelligence-anytime-soon/ar-AA1EWy4y
https://www.theatlantic.com/culture/archive/2025/06/artificial-intelligence-illiteracy/683021/


Conclusion

24017301626_14e1fa2565_c.jpg

https://momjian.us/presentations https://www.flickr.com/photos/davep-uk/

125 / 125


