
The Future of Postgres Sharding

BRUCE MOMJIAN

This presentation will cover the advantages of sharding and future Postgres sharding

implementation requirements.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: April 2023

1 / 24



Outline

1. Scaling

2. Vertical scaling options

3. Non-sharding horizontal scaling

4. Existing sharding options

5. Built-in sharding accomplishments

6. Future sharding requirements

2 / 24



1. Scaling

Database scaling is the ability to increase database throughput by utilizing additional

resources such as I/O, memory, CPU, or additional computers.

However, the high concurrency and write requirements of database servers make scaling

a challenge. Sometimes scaling is only possible with multiple sessions, while other

options require data model adjustments or server configuration changes.
Postgres Scaling Opportunities https://momjian.us/main/presentations/preformance.
html#scaling

3 / 24

https://momjian.us/main/presentations/preformance.html#scaling
https://momjian.us/main/presentations/preformance.html#scaling


2. Vertical Scaling

Vertical scaling can improve performance on a single server by:

• Increasing I/O with
• faster storage
• tablespaces on storage devices
• striping (RAID 0) across storage devices
• Moving WAL to separate storage

• Adding memory to reduce read I/O requirements

• Adding more and faster CPUs

4 / 24



3. Non-Sharding Horizontal Scaling

Non-sharding horizontal scaling options include:

• Read scaling using Pgpool and streaming replication

• CPU/memory scaling with asynchronous multi-master

The entire data set is stored on each server.

http://en.wikipedia.org/wiki/Hype_cycle

5 / 24

http://en.wikipedia.org/wiki/Hype_cycle


Pgpool II With Streaming Replication

Streaming replication avoids the problem

of non-deterministic queries producing

different results on different hosts.

SELECTINSERT, UPDATE,

DELETE, MERGE

to primary host

ReplicaMaster

to any host

pgpool

Replica

Streaming

Replication

6 / 24



Why Use Sharding?

• Only sharding can reduce I/O, by splitting data across servers

• Sharding benefits are only possible with a shardable workload

• The shard key should be one that evenly spreads the data

• Changing the sharding layout can cause downtime

• Additional hosts reduce reliability; additional standby servers might be required

7 / 24



Typical Sharding Criteria

• List

• Range

• Hash

8 / 24



4. Existing Sharding Solutions

• Application-based sharding

• PL/Proxy

• Postgres-XC/XL

• Citus

• Hadoop

The data set is sharded (striped) across servers.

9 / 24



5. Built-in Sharding Accomplishments:

Sharding Using Foreign Data Wrappers (FDW)

SQL Queries

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

https://wiki.postgresql.org/wiki/Built-in_Sharding
10 / 24

https://wiki.postgresql.org/wiki/Built-in_Sharding


FDW Sort/Join/Aggregate Pushdown

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

joins (9.6)

sorts (9.6)
aggregates (11)

11 / 24



Advantages of FDW Sort/Join/Aggregate Pushdown

• Sort pushdown reduces CPU and memory overhead on the coordinator

• Join pushdown reduces coordinator join overhead, and reduces the number of rows

transferred

• Aggregate pushdown causes summarized values to be passed back from the shards

• WHERE clause restrictions are also pushed down

12 / 24



Aggregate Pushdown in Postgres 11

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

Aggregates, e.g., SUM()

Unfortunately, aggregates are currently evaluated one partition at a time, i.e., serially.
13 / 24



FDW DML Pushdown in Postgres 9.6 & 11

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

INSERT, UPDATE

DELETE, MERGE, COPY

14 / 24



Parallel Shard Access in Postgres 14

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

Shard Parallel Access

15 / 24



Advantages of Parallel Shard Access

• Ideal for queries that must run on every shard, e.g.,
• restrictions on static tables
• queries with no sharded-key reference
• queries with multiple shared-key references

• Parallel aggregation across shards

https://www.youtube.com/watch?v=apvzyPwDN5g

16 / 24

https://www.youtube.com/watch?v=apvzyPwDN5g


6. Future Sharding Requirements: Joins With Replicated Tables

SQL Queries

SQL Queries

with joins to static data

PG FDW

and static data restrictions

Foreign S. Foreign S. Foreign S.
repl. repl. repl.

17 / 24



Implementing Joins With Replicated Tables

Joins with replicated tables allow join pushdown where the query restriction is on the

replicated (lookup) table and not on the sharded column. Tables can be replicated to

shards using logical replication. The optimizer must be able to adjust join pushdown

based on which tables are replicated on the shards.

18 / 24



Shard Management

SQL Queries

DDL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

Shard management will be added to the existing partitioning syntax, which was added in

Postgres 10.
19 / 24



Global Snapshot Manager

SQL Queries

SQL Queries

Manager
Global Snapshot

PG FDW

Foreign Server Foreign Server Foreign Server

20 / 24



Implementing a Global Snapshot Manager

• We already support sharing snapshots among clients with pg_export_snapshot()

• We already support exporting snapshots to other servers with the GUC

hot_standby_feedback

21 / 24



Global Transaction Manager

SQL Queries

SQL Queries

Foreign Server

Manager
Global Transaction

PG FDW

Foreign Server Foreign Server

22 / 24



Implementing a Global Transaction Manager

• Can use prepared transactions (two-phase commit)

• Transaction manager can be internal or external

• Can use an industry-standard protocol like XA

23 / 24



Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/anotherpintplease/

24 / 24


