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Configuring Postgres for heavy workloads can take many forms. This talk explores

available Postgres scaling options.
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Scaling

Database scaling is the ability to increase database throughput by utilizing additional
resources such as I/O, memory, CPU, or additional computers.

However, the high concurrency and write requirements of database servers make scaling

a challenge. Sometimes scaling is only possible with multiple sessions, while other

options require data model adjustments or server configuration changes.
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Outline

Postgres scaling opportunities:

1. Multi-session

2. Single-session

3. Multi-host
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Vertical/Horizontal Scaling

Horizontal
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Examples

Vertical scaling examples:

• More and faster CPUs

• More memory

• More and faster storage

• Battery-backed cache (BBU)

Horizontal scaling involves adding servers.
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Hardware Components
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1. Multi-Session
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I/O Spreading Using Tablespaces
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Tablespaces

Requires tables & indexes to be spread across tablespaces

Tablespaces should be on different storage devices 8 / 31



I/O Spreading Using RAID 0
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RAID 0

Auto-hashed by storage block number
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Write Spreading Using WAL Relocation
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WAL Tables and Indexes

Separates WAL writes from table & index I/O
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Read Reduction via Increased Memory
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Additional memory caching reduces read requirements
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Scaling Connections Using a Pooler
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Fewer idle connections reduces resource usage
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Multi-Session CPU Scaling
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Multiple sessions spread across available CPUs
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2. Single-Session
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Read Parallelism Using effective_io_concurrency
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Table

Index

Used during bitmap heap scand

Assumes table is hashed across multiple devices 15 / 31



I/O Scaling via Parallelism
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Involves parallel index, heap, partition, and tablespace access
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CPU Scaling via Parallelism
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Involves parallel sorts, joins, and function execution
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Sort I/O Reduction Using work_mem
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Memory Sorts/Hashes

Reduces temporary result reads & writes
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Logical Dump Parallelism
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pg_dump

Dumps tables using concurrent database connections
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Logical Restore Parallelism

CPU

I/O

Memory

pg_restore

Loads tables and creates indexes using concurrent database connections
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3. Multi-Host

https://wiki.postgresql.org/wiki/PGECons_CR_Scaleout_2021
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Read Scaling Using Pgpool & Streaming Replication

SELECTINSERT, UPDATE,

DELETE, MERGE

to primary host

Slave SlaveMaster
replication

to any host

replication
streaming

pgpool

A full copy of the data exists on every node.
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CPU/Memory Scaling With Asynchronous Multi-Master

SQL Queries SQL Queries

Asynchronous
CPU

Memory

CPU

Memory

Tables and Indexes Tables and Indexes

A full copy of the data exists on every node; requires conflict resolution. The

asynchronous delay allows write-load buffering.
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Oracle Real Application Clusters (RAC)

Synchronization

SQL Queries SQL Queries

CPU

Memory

CPU

Memory

CPU
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WALWAL1 WAL2Tables and Indexes

Tables and indexes on shared storage; inter-node synchronization required for cache

consistency
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I/O Scaling with Sharding: Challenges

• Multi-host write queries require two-phase commit (except XC)

• Multi-host visibility snapshots are not supported (except XC)

• Sharding benefits are only possible with a shardable workload

• Changing the sharding layout can cause downtime

• Additional hosts reduce reliability; additional standby servers might be required
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Application-Based Sharding

Applications

SQL Queries

Data Node Data Node Data Node

Applications send queries based on the sharding layout.

26 / 31



Sharding Using PL/Proxy

Function Calls

SQL Queries

PL/Proxy

Data Node Data Node Data Node

Requires rows to be hashed by key, supports parallel-node query execution
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Sharding Using Postgres-XC

SQL Queries

XC Coordinator

SQL Queries

Data NodeData Node Data Node

Joins, sorts, aggregates

Manager
Global Transaction

Enables hashing of large tables, replication of others

Supports parallel-node consistent transactions and DDL
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Scaling Using Foreign Data Wrappers

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

joins (9.6)

sorts (9.6)
aggregates (11)

Requires rows to be hashed by key
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Bulk Data Scaling Using Hadoop

Map/Reduce Jobs

Postgres Server

Hadoop

Postgres Server Postgres Server
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Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/87179607@N06/
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