
Postgres Scaling Opportunities

BRUCE MOMJIAN

Configuring Postgres for heavy workloads can take many forms. This talk explores

available Postgres scaling options.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: April 2023

1 / 31



Scaling

Database scaling is the ability to increase database throughput by utilizing additional
resources such as I/O, memory, CPU, or additional computers.

However, the high concurrency and write requirements of database servers make scaling

a challenge. Sometimes scaling is only possible with multiple sessions, while other

options require data model adjustments or server configuration changes.

2 / 31



Outline

Postgres scaling opportunities:

1. Multi-session

2. Single-session

3. Multi-host

3 / 31



Vertical/Horizontal Scaling

Horizontal

Vertical

4 / 31



Examples

Vertical scaling examples:

• More and faster CPUs

• More memory

• More and faster storage

• Battery-backed cache (BBU)

Horizontal scaling involves adding servers.

5 / 31



Hardware Components

I/O

CPU

Memory

6 / 31



1. Multi-Session

Clients

Database

CPU

I/O

Memory

7 / 31



I/O Spreading Using Tablespaces

Clients

Database

CPU

Memory

Tablespaces

Requires tables & indexes to be spread across tablespaces

Tablespaces should be on different storage devices 8 / 31



I/O Spreading Using RAID 0

Clients

Database

CPU

Memory

RAID 0

Auto-hashed by storage block number

9 / 31



Write Spreading Using WAL Relocation

Clients

Database

CPU

Memory

WAL Tables and Indexes

Separates WAL writes from table & index I/O

10 / 31



Read Reduction via Increased Memory

Clients

Database

CPU

I/O

Memory

Additional memory caching reduces read requirements

11 / 31



Scaling Connections Using a Pooler

Clients

Database

Connection Pooler

CPU

I/O

Memory

Fewer idle connections reduces resource usage

12 / 31



Multi-Session CPU Scaling

Clients

Database

I/O

Memory

CPU

Multiple sessions spread across available CPUs

13 / 31



2. Single-Session

Client

Database

CPU

I/O

Memory

14 / 31



Read Parallelism Using effective_io_concurrency

Client

Database

CPU

Memory

Table

Index

Used during bitmap heap scand

Assumes table is hashed across multiple devices 15 / 31



I/O Scaling via Parallelism

Client

Database

CPU

Memory

I/O

Involves parallel index, heap, partition, and tablespace access

16 / 31



CPU Scaling via Parallelism

Database

Client

I/O

Memory

CPU

Involves parallel sorts, joins, and function execution

17 / 31



Sort I/O Reduction Using work_mem

Client

Database

CPU

I/O

Memory Sorts/Hashes

Reduces temporary result reads & writes

18 / 31



Logical Dump Parallelism

CPU

I/O

Memory

pg_dump

Dumps tables using concurrent database connections

19 / 31



Logical Restore Parallelism

CPU

I/O

Memory

pg_restore

Loads tables and creates indexes using concurrent database connections

20 / 31



3. Multi-Host

https://wiki.postgresql.org/wiki/PGECons_CR_Scaleout_2021

21 / 31

https://wiki.postgresql.org/wiki/PGECons_CR_Scaleout_2021


Read Scaling Using Pgpool & Streaming Replication

SELECTINSERT, UPDATE,

DELETE, MERGE

to primary host

Slave SlaveMaster
replication

to any host

replication
streaming

pgpool

A full copy of the data exists on every node.

22 / 31



CPU/Memory Scaling With Asynchronous Multi-Master

SQL Queries SQL Queries

Asynchronous
CPU

Memory

CPU

Memory

Tables and Indexes Tables and Indexes

A full copy of the data exists on every node; requires conflict resolution. The

asynchronous delay allows write-load buffering.

23 / 31



Oracle Real Application Clusters (RAC)

Synchronization

SQL Queries SQL Queries

CPU

Memory

CPU

Memory

CPU

Memory

WALWAL1 WAL2Tables and Indexes

Tables and indexes on shared storage; inter-node synchronization required for cache

consistency
24 / 31



I/O Scaling with Sharding: Challenges

• Multi-host write queries require two-phase commit (except XC)

• Multi-host visibility snapshots are not supported (except XC)

• Sharding benefits are only possible with a shardable workload

• Changing the sharding layout can cause downtime

• Additional hosts reduce reliability; additional standby servers might be required

25 / 31



Application-Based Sharding

Applications

SQL Queries

Data Node Data Node Data Node

Applications send queries based on the sharding layout.

26 / 31



Sharding Using PL/Proxy

Function Calls

SQL Queries

PL/Proxy

Data Node Data Node Data Node

Requires rows to be hashed by key, supports parallel-node query execution

27 / 31



Sharding Using Postgres-XC

SQL Queries

XC Coordinator

SQL Queries

Data NodeData Node Data Node

Joins, sorts, aggregates

Manager
Global Transaction

Enables hashing of large tables, replication of others

Supports parallel-node consistent transactions and DDL
28 / 31



Scaling Using Foreign Data Wrappers

SQL Queries

PG FDW

Foreign Server Foreign Server Foreign Server

joins (9.6)

sorts (9.6)
aggregates (11)

Requires rows to be hashed by key

29 / 31



Bulk Data Scaling Using Hadoop

Map/Reduce Jobs

Postgres Server

Hadoop

Postgres Server Postgres Server

30 / 31



Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/87179607@N06/

31 / 31


