
## What's Missing in Postgres?

BRUCE MOMJIAN



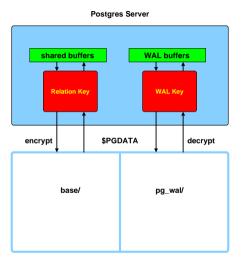
The presentation explains why some features are missing in Postgres. *Title concept from Melanie Plageman* 

https://momjian.us/presentations





Last updated: November 2025


#### Outline

- 1. Postgres feature history
- 2. Cluster file encryption, i.e., TDE
- 3. Single host, performance
  - 3.1 optimizer hints
  - 3.2 global indexes
  - 3.3 columnar storage
  - 3.4 direct I/O
  - 3.5 server-side threading
  - 3.6 internal connection pooler
- 4. Multi-host
  - 4.1 logical replication of DDL
  - 4.2 Oracle RAC-like
  - 4.3 multi-master replication
  - 4.4 sharding
- 5. Current Status

## 1. Postgres Feature History Since 2010

| version  | reldate    | months | changes | C lines | C changes | 8 C change |
|----------|------------|--------|---------|---------|-----------|------------|
| 9.0      | 2010-09-20 | <br>   | 237     | 870790  |           |            |
| 9.1      | 2011-09-12 | 12     | 203     | 932936  | 62146     | 7          |
| 9.2      | 2012-09-10 | 12     | 238     | 987460  | 54524     | 5          |
| 9.3      | 2013-09-09 | 12     | 177     | 1040813 | 53353     | 5          |
| 9.4      | 2014-12-18 | 15     | 211     | 1096707 | 55894     | 5          |
| 9.5      | 2016-01-07 | 13     | 193     | 1167110 | 70403     | 6          |
| 9.6      | 2016-09-29 | 9      | 214     | 1219720 | 52610     | 4          |
| 10       | 2017-10-05 | 12     | 189     | 1316447 | 96727     | 7          |
| 11       | 2018-10-18 | 12     | 170     | 1369590 | 53143     | 4          |
| 12       | 2019-10-03 | 11     | 180     | 1423215 | 53625     | ] 3        |
| 13       | 2020-09-24 | 12     | 178     | 1473738 | 50523     | ] 3        |
| 14       | 2021-09-30 | 12     | 220     | 1558178 | 84440     | 5          |
| 15       | 2022-10-13 | 12     | 184     | 1587763 | 29585     | 1          |
| 16       | 2023-09-14 | 11     | 206     | 1608031 | 20268     | 1          |
| 17       | 2024-09-26 | 12     | 182     | 1673116 | 65085     | 4          |
| 18       | 2025-09-25 | 12     | 210     | 1750814 | 77698     | 4          |
| Averages | 1          | 12     | 200     |         |           | 4.27       |

## 2. Cluster file encryption, i.e., TDE



# Cluster File Encryption

#### Advantages

- Meets regulatory requirements, e.g., PCI
- Does not require coordination with infrastructure teams for file system encryption
- Automatically encrypts file system backups

#### Disadvantages

- Of questionable security value, e.g. the key is in operating system memory
- Requires significant source code changes
- Client-side encryption is more secure

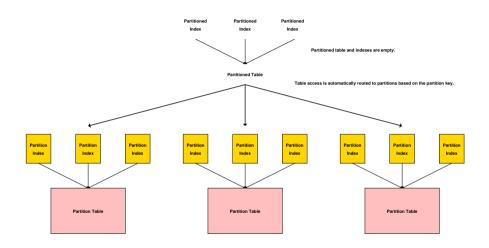
Percona is working on an open source TDE extension.

## 3a. Optimizer Hints

```
count
                                                lookup letter
             Seg Scan on sample (cost=0.00..21.12 \text{ rows}=342 \text{ width}=2)
      342
р
        13
             Bitmap Heap Scan on sample (cost=4.25..20.69 rows=13 width=2)
C
r
        12
             Bitmap Heap Scan on sample (cost=4.24..20.14 rows=12 width=2)
             Bitmap Heap Scan on sample (cost=4.19..17.25 rows=6 width=2)
                                              (cost=4.19..17.25 \text{ rows}=6 \text{ width}=2)
         6
             Bitmap Heap Scan on sample
             Bitmap Heap Scan on sample
                                              (cost=4.19..17.25 \text{ rows}=6 \text{ width}=2)
S
             Bitmap Heap Scan on sample
                                              (cost=4.19..15.86 \text{ rows}=5 \text{ width}=2)
u
                                              (cost=4.19..15.86 \text{ rows}=5 \text{ width}=2)
             Bitmap Heap Scan on sample
Ч
             Bitmap Heap Scan on sample
                                              (cost=4.18..14.23 \text{ rows}=4 \text{ width}=2)
             Bitmap Heap Scan on sample
                                              (cost=4.18..14.23 \text{ rows}=4 \text{ width}=2)
٧
             Bitmap Heap Scan on sample
                                             (cost=4.17...12.31 \text{ rows}=3 \text{ width}=2)
a
             Bitmap Heap Scan on sample (cost=4.16..10.07 rows=2 width=2)
e
k
              Index Only Scan using i sample on sample (cost=0.15..8.17 rows=1 width=2)
              Index Only Scan using i sample on sample (cost=0.15..8.17 rows=1 width=2)
```

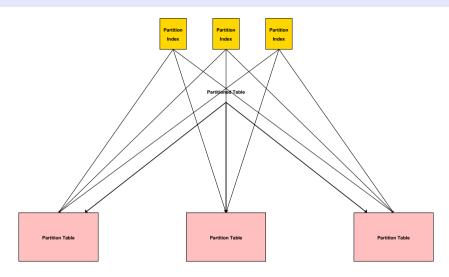
# Optimizer Hints

#### Advantages


• Useful for quick fixes of optimizer mistakes

#### Disadvantages

- Locks query plans, preventing data distribution changes and optimizer improvements from using better plans
- While this can fix specific queries, the cause is often imperfect optimizer statistics or server settings
  - a more general fix can improve an entire class of queries, e.g., extended statistics, random\_pages\_cost
- Often prevents the problem from being diagnosed and reported to the database project


pg\_hint\_plan is already available as an open source extension.

### 3b. Global Indexes: Per-Partition Indexes



b

## 3b. Global indexes



Ь

https://momjian.us/main/presentations/performance.html#partitioning

### Global Indexes

#### Advantages

- Allows indexing of values that are not part of the partition key
- Allows unique constraints that are not part of the partition key

- Partitioning is used to split very large tables, so global indexes would be very large
- Dropping partitions would be slow
- Requires significant source code changes

# 3c. Columnar Storage

| C | nl | ш | m | n | 1 |
|---|----|---|---|---|---|

| Value 1 | Row 2, 7, 9, 12   |
|---------|-------------------|
| Value 2 | Row 1, 5, 11, 14  |
| Value 3 | Row 4, 6, 8, 15   |
| Value 4 | Row 3, 10, 13, 16 |

Column 2

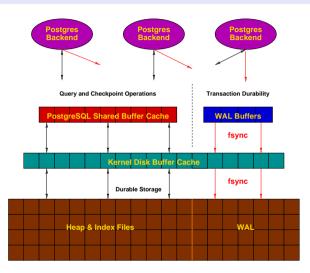
| Value 1 | Row 4, 6, 11, 16  |
|---------|-------------------|
| Value 2 | Row 3, 10, 12, 14 |
| Value 3 | Row 1, 5, 7, 9    |
| Value 4 | Row 2, 8, 13, 15  |

Column 3

| Value 1 | Row 4, 7, 11, 14 |
|---------|------------------|
| Value 2 | Row 2, 5, 6, 13  |
| Value 3 | Row 3, 8, 10, 12 |
| Value 4 | Row 1, 9, 15, 16 |

## Columnar Storage

#### Advantages


- Column values are only stored once per table, reducing storage requirements
- Ideal for columns with many duplicates

#### Disadvantages

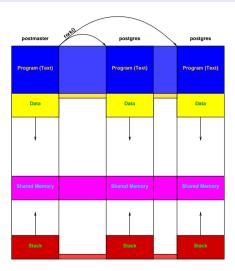
- Accessing all columns of a row is expensive
- Updates and deletes are expensive
- Requires optimizer and storage changes

Citus is already available as an open source extension.

## 3d. Direct I/O

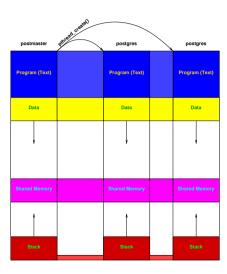


https://momjian.us/main/presentations/administration.html#wal


## Direct I/O

#### Advantages

- Prevents double-buffering by the kernel and Postgres shared buffer cache
- Prevents copying of data from kernel buffers to shared buffers


- Postgres-scheduled reads and writes might conflict with non-Postgres I/O
- Prevents sharing of kernel memory for I/O caching and per-process memory usage

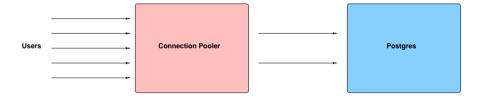
# 3e. Server-Side Threading: Fork()



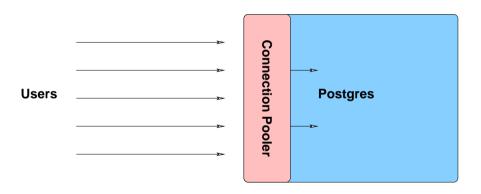
https://momjian.us/main/presentations/internals.html#shared memory

# Server-Side Threading




# Server-Side Threading

#### Advantages


Reduces task switching time

- Makes Postgres sessions less resilient to session failure
- Requires significant source code changes

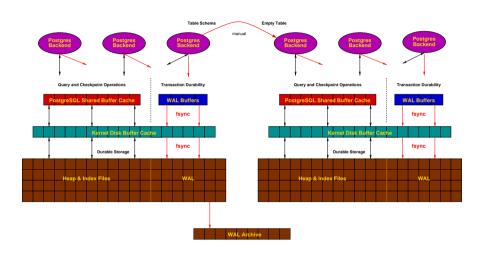
## 3f. Internal Connection Pooler: External Pooler



## Internal Connection Pooler



### **Internal Connection Pooler**


#### Advantages

- Reduces latency
- More flexible authentication
- Simpler configuration

#### Disadvantages

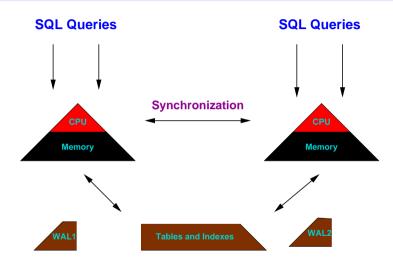
Insufficient for failover control

# 4a. Logical Replication of DDL



https://momjian.us/main/presentations/administration.html#wal

# Logical Replication of DDL


#### Advantages

• Simplifies administration

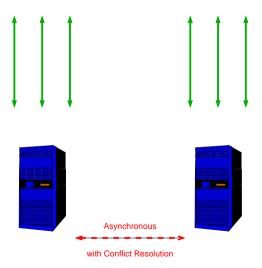
#### Disadvantages

• Requires regular source code updates to replicate new DDL

### 4b. Oracle RAC-Like



https://momjian.us/main/presentations/performance.html#scaling


### Oracle RAC-Like

#### Advantages

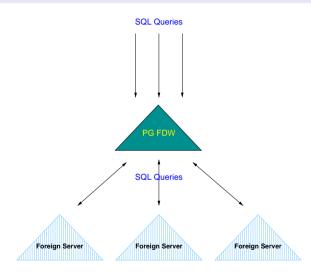
- Scales CPU and memory
- partial reliability, partial scaling

- Does not scale I/O
- Communication overhead between hosts requires application workload partitioning
- Complex architecture

## 4c. Multi-Master Replication



https://momjian.us/main/presentations/arch.html#replication


## Multi-Master Replication

#### Advantages

- Allows simple draining of server traffic for maintenance
- Allows read-only scaling without traffic management

- Requires conflict resolution management
- Requires DDL management when using Postgres logical replication; see section 4a

# 4d. Sharding



https://momjian.us/main/presentations/pending.html#sharding

# Sharding

#### Advantages

- Allows writes to be scaled across multiple servers
- Allows data volumes to exceed a single server

- Complex setup and administration
- Additional latency
- Limited value for queries that are counter to the sharding key

#### 5. Current Status

- 1. Postgres feature history
- 2. Cluster file encryption, i.e., TDE
- 3. Single host, performance
  - 3.1 optimizer hints
  - 3.2 global indexes
  - 3.3 columnar storage
  - 3.4 direct I/O
  - 3.5 server-side threading
  - 3.6 internal connection pooler
- 4. Multi-host
  - 4.1 logical replication of DDL
  - 4.2 Oracle RAC-like
  - 4.3 multi-master replication
  - 4.4 sharding
- 5. Current status

Green is in-progress; red is no progress

## Conclusion



