
Postgres in a Microservices World

BRUCE MOMJIAN

This presentation explains the value of microservices to modern organizations and how

Postgres can enhance such architectures.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: April 2023

1 / 111

Outline

1. Changing role of information technology

2. Why microservices?

3. What are microservices?

4. How to organize persistent data for microservices?

5. Problems of per-service data

5.1 call amplification
5.2 cross-service joins
5.3 writing across microservices

6. Postgres and microservices

7. Tying services together

2 / 111

1. Changing Role of Information Technology

https://www.flickr.com/photos/flex/

3 / 111

Information Technology (IT) in a Supporting Role

Department Department Department

Department

Information

Technology

Customers

4 / 111

IT as the Customer-Facing Role

Department Department Department

Department

Technology

Information

Customers

5 / 111

IT Required for Departmental Success

Department Department Department

Information Technology Department

Customers

6 / 111

Departmental IT

Department Department Department

Information

Technology

Team

Information

Technology

Team

Information

Technology

Team

Customers

7 / 111

Splintering IT Trend

• Customer communication increasingly digital

• Customer digital interaction increasingly important

• IT now critical, not just in a supporting role

• IT is increasingly nimble and less costly

8 / 111

2. Why Microservices?

https://www.flickr.com/photos/zaffi/

9 / 111

Simple?

Monolithic and modular applications bad

Microservices good

10 / 111

I Hope Not

Monolithic and modular applications bad

Microservices good

11 / 111

Microservice Benefits

Microservices can enable:
• Alignment of product teams with business goals (see previous section)

• domain-driven design (DDD)
• Improved software development using smaller teams

• Agile
• DevOps

• More frequent software deployment
• continuous integration and continuous delivery (CICD)

• Easier unit testing
• More flexible scaling
• Customized programming languages and databases
• Improved reliability

• event-driven architecture (EDA)

but at a cost. Win developer bingo: a2c2d6e3gi2lv-ops,

https://blog.dreamfactory.com/7-key-benefits-of-microservices/

https://medium.datadriveninvestor.com/what-are-the-benefits-of-microservices-and-will-they-pay-for-your-business-7b23f57c2234
https://www.youtube.com/watch?v=wgdBVIX9ifA

12 / 111

https://blog.dreamfactory.com/7-key-benefits-of-microservices/
https://medium.datadriveninvestor.com/what-are-the-benefits-of-microservices-and-will-they-pay-for-your-business-7b23f57c2234
https://www.youtube.com/watch?v=wgdBVIX9ifA

3. What Are Microservices?

https://www.flickr.com/photos/nasakennedy/

13 / 111

Monolithic Architecture

User

Program

14 / 111

Modular Architecture

User

Module Module Module Extension

Library

LibraryLibrary

Library

Kernel
Module

Kernel

Module communication is done via function calls in the same address space.
15 / 111

Microservice Architecture

User User User User

Service

Library

Library

Kernel
Module

Kernel

Service

Library

Library

Kernel
Module

Kernel

Service

Library

Library

Kernel
Module

Kernel

Library

Service

Library

Library

Kernel
Module

Kernel

Service calls are done via a network request, which is more likely than function calls to

fail or be delayed. For containers, the kernel is virtually private.
16 / 111

Architectural Differences

Monolithic: application in a single executable

Modular: application relies on libraries, kernel services, and external services;

modules communicate by calling functions in the same address space

Microservices: application split into multiple executables in dedicated address spaces;

all service communications are via network requests

17 / 111

Microservices Are Part of a Larger Modularization Trend

• Monolithic kernels to modular kernels
• VMS to Unix
• modules can be added/removed from kernels without recompiling

• Command-line tools with many options to Unix command piping
• traditional VMS/MS Windows command line vs. bash (and PowerShell)

• Application library usage
• avoid copying code between applications by using custom libraries
• avoid recompiling after library changes by using dynamically-linking libraries
• use externally-developed libraries, often installed by package managers

• Use network services for complex tasks
• SAN for storage
• DNS for domain-name lookup
• SMTP for email
• HTTPS for website and REST

• database

18 / 111

Modularization to the Extreme?

• Every kernel function a module?
• microkernel

• Minimal command-line options?
• no ls -r? Use sort -r

• Every function in its own library or package?

• Use network services for simple tasks
• all function calls become network service calls

19 / 111

Hype Cycle

http://en.wikipedia.org/wiki/Hype_cycle

20 / 111

http://en.wikipedia.org/wiki/Hype_cycle

Appropriate Modularization, Appropriate Microservices

Software engineers are used to implementing appropriate modularization. Microservices

also require appropriate deployment. Microservices are not a goal, like modularization

is not a goal.

21 / 111

4. How To Organize Persistent Data for Microservices

https://www.flickr.com/photos/wikimediacommons/

22 / 111

Microservices with Per-Service Data

Data
Persistent

User User User User

Data
Persistent

Data
Persistent

Data
Persistent

Service Service Service Service

23 / 111

Benefits of Per-Service Data

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams
• team fully controls its data

• More frequent software deployment
• no need to coordinate schema changes with other teams during deployment

• Easier unit testing

• More flexible scaling
• data stores are smaller and can be scaled independently

• Customized programming languages and databases
• team chooses its ideal language and data store

• Improved reliability
• unavailability of one service does not affect other services, no central database

but at a cost.
24 / 111

5. Problems of Per-Service Data

https://www.flickr.com/photos/dan_e/

25 / 111

Problems of Per-Service Data

• Services are isolated

• Inter-service interactions are only through predefined APIs

• How can cross-service data needs be met?

• Anti-relational?

26 / 111

5.1 Call Amplification

https://www.flickr.com/photos/martin_heigan/

27 / 111

Single Read Per Request

User

Data
Persistent

Data
Persistent

Data
Persistent

Data
Persistent

Service Service Service Service

For example, look up the customer, their shipping address, and credit limit.
https://www.youtube.com/watch?v=E8-e-3fRHBw

28 / 111

https://www.youtube.com/watch?v=E8-e-3fRHBw

Multiple Reads Per Request

User

Data
Persistent

Data
Persistent

Data
Persistent

Data
Persistent

Service Service Service Service

For example, look up the customer, their orders and shipments.

29 / 111

Multiple Requests with Multiple Reads

Data
Persistent

Data
Persistent

Data
Persistent

Data
Persistent

User

Service Service Service Service

For example, look up all customers who have ordered in the past week, their orders and shipments.

30 / 111

Fixing the Microservice Call Amplification with Caches

Data &
Persistent

Other
Service
Cache

Data &
Persistent

Other
Service
Cache

Data &
Persistent

Other
Service
Cache

Data &
Persistent

Other
Service
Cache

User

Service Service Service Service

The cache is populated via service calls or event subscriptions; might need adjustment for data schema
changes.

31 / 111

Fixing with Read-Only Copies

Data &
Persistent

Only
Data

Read
Data &

Persistent

Only
Data

Read
Data &

Persistent

Only
Data

Read
Data &

Persistent

Only
Data

Read

User

Service Service Service Service

The read-only copies can be from microservice calls, an event stream, or a central data store. Schema
changes might require external team coordination.

32 / 111

5.2 Cross-Service Joins

https://www.flickr.com/photos/19779889@N00/

33 / 111

Join in User Applications

Data
Persistent

Data
Persistent

Data
Persistent

Data
Persistent

Service

Join in User Application

Service ServiceService

The application probably does a nested-loop join with inner index scan. It does not have row counts or
column selectivity estimates like the optimizer of a relational database.

34 / 111

https://stackoverflow.com/questions/29761872/microservices-and-database-joins
https://momjian.us/main/presentations/performance.html#optimizer

Join in API Composer

User

Data
Persistent

Data
Persistent

Data
Persistent

Data
Persistent

Join in API Composer

Service Service Service Service

API composer joins have similar limitations to joins in user applications.

35 / 111

Join Using a Data Aggregator

Data
Persistent

User

Data
Persistent

Data
Persistent

Data
Persistent

Service
Data

Read−Only

Aggregator
Service Service Service

Publication of service events or database replication can be used to populate the data aggregator. The data
can be stored as materialized views for specific queries, or ad hoc queried if using a relational database.
Separating reads and writes is sometimes called Command Query Responsibility Segregation (CQRS).

36 / 111

5.3 Writing Across Services

https://www.flickr.com/photos/pellesten/

37 / 111

Shared Mutable State Is Hard

Easy

Easy Hard

Mutable, Volatile

Immutable, Static

Easy

Private Shared

Mutable data stored in multiple places requires locking and synchronization, making sharing difficult.
https://momjian.us/main/blogs/pgblog/2021.html#June_16_2021

38 / 111

https://momjian.us/main/blogs/pgblog/2021.html#June_16_2021

Decoupled Atomic Commits

• Multiple per-service writable copies of data would be too hard to lock and

synchronize in a decoupled way

• Two-phase commit would also couple microservices too closely

39 / 111

6. Postgres and Microservices

https://www.flickr.com/photos/lapine403/

40 / 111

Adjust Relational Systems

• Transaction isolation level

• Durability per
• transaction
• table
• server
• streaming replica

• Normalization

https://www.youtube.com/watch?v=tRteUhd9eAI

41 / 111

https://www.youtube.com/watch?v=tRteUhd9eAI

Microservices: A Dial

Don’t think of microservices as flipping a switch;
think about it as turning a dial.

Monolith to Microservices, Sam Newman

https://www.youtube.com/watch?v=GBTdnfD6s5Q

https://www.youtube.com/watch?v=MjIfWe6bn40
https://www.flickr.com/photos/61629877@N04/

42 / 111

https://www.youtube.com/watch?v=GBTdnfD6s5Q
https://www.youtube.com/watch?v=MjIfWe6bn40

Data Encapsulation

Data encapsulation allows data to be hidden inside a class or module — data interaction

from outside the class/module is controlled by access functions (“getters” and “setters”)

or other methods:

public class Employee {
private BigDecimal salary = new BigDecimal(0);

public BigDecimal setSalary() {
}

…

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

43 / 111

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

Monolithic Data Layout

Database
Schema

Services
Users &

Service
1

Service
2

Service
3

Service
5

Service
4

44 / 111

Monolithic Data Layout

Database
Schema

Services
Users &

2
Service

1
Service

Only two services

45 / 111

Monolithic Data Layout

-- create role

CREATE ROLE service;

-- create schema

CREATE SCHEMA service;
ALTER SCHEMA service OWNER TO service;

-- become ’service’ user

SET SESSION AUTHORIZATION service;

-- create table

CREATE TABLE service.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- all services have full access

All queries used in this presentation are available at https://momjian.us/main/writings/pgsql/
microservices.sql. 46 / 111

https://momjian.us/main/writings/pgsql/microservices.sql
https://momjian.us/main/writings/pgsql/microservices.sql

Per-Service Schema

Database

Services
Users &

service2service1

2
Service

1
Service

Logical isolation of services

47 / 111

Per-Service Schema

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create per-service schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

48 / 111

Per-Service Schema

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create table

CREATE TABLE service1.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- give all services full access

GRANT ALL ON SCHEMA service1 TO service;
GRANT ALL ON service1.employee TO service;

49 / 111

Benefit of Per-Service Schema

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

50 / 111

Read-Only for Non-Owners

Database
service2service1

Service 2
Users &

Service 1 Service 2 Service 1
Users &

1
Service

2
Service

Authorization isolation of services

51 / 111

Read-Only for Non-Owner

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create per-service schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

52 / 111

Read-Only for Non-Owner

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create table

CREATE TABLE service1.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- give other services read-only access

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee TO service;

53 / 111

Benefit of Read-Only for Non-Owner

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

54 / 111

Versioning

Database
service2service1

Service 2
Users &

Service 1 Service 2 Service 1
Users &

1_v1
Service

2_v1
Service

Decoupling of table schema changes; schema names can be versioned instead

55 / 111

Versioning

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create per-service schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

56 / 111

Versioning

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create table

CREATE TABLE service1.employee_v1 (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- give other services read-only access

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

57 / 111

Benefit of Versioning

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

58 / 111

View

Database
service2service1

Service 2
Users &

Service 1 Service 2 Service 1
Users &

Service
1

Service
1_v1

Service
2_v1

Service
2

Views decouple the private and public table schemas. We could also output JSON using a function API.

59 / 111

View

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create per-service schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

60 / 111

View

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create table

CREATE TABLE service1.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

61 / 111

Public Schema

Database
service1_private service1

Service 1 Service 2
Users &

1
Service

1_v1
Service

Only one service shown, separate public schema hides private implementation

62 / 111

Public Schema

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

63 / 111

Public Schema

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create private table

CREATE TABLE service1_private.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

64 / 111

Setter Function

Database
service1_private service1

Service 1 Service 2
Users &

1_v1
Service

Func1_v1

1
Service

Setter function is a public API for writes

65 / 111

Setter Function

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

66 / 111

Setter Function

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create private table

CREATE TABLE service1_private.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

67 / 111

Setter Function

-- create setter function for salary

-- use a transaction block so PUBLIC permission is never visible

BEGIN WORK;
CREATE FUNCTION service1.set_employee_salary_v1

(emp_id service1_private.employee.emp_id%TYPE,
new_salary service1_private.employee.salary%TYPE)
RETURNS VOID

AS $$
UPDATE service1_private.employee
SET salary = new_salary
WHERE service1_private.employee.emp_id = emp_id

$$
LANGUAGE sql SECURITY DEFINER;

return this.salary;

GRANT EXECUTE ON FUNCTION service1.set_employee_salary_v1 TO service;
REVOKE EXECUTE ON FUNCTION service1.set_employee_salary_v1 FROM PUBLIC;
COMMIT WORK;

68 / 111

Benefit of Setter Function

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

69 / 111

Foreign Data Wrapper (FDW)

Database
service1_private service1

Service 2
Users &

Database
service1_private service1

Service 1

1
Service

1_v1
Service

Func1_v1

1
Service

Func1_v1

1_v1
Service

Using FDWs, services can now be on different hosts

70 / 111

Foreign Data Wrapper: Private

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

71 / 111

Foreign Data Wrapper: Private

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create private table

CREATE TABLE service1_private.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

72 / 111

Foreign Data Wrapper: Private

-- create setter function for salary

-- use a transaction block so PUBLIC permission is never visible

BEGIN WORK;
CREATE FUNCTION service1.set_employee_salary_v1

(emp_id service1_private.employee.emp_id%TYPE,
new_salary service1_private.employee.salary%TYPE)
RETURNS VOID

AS $$
UPDATE service1_private.employee
SET salary = new_salary
WHERE service1_private.employee.emp_id = emp_id

$$
LANGUAGE sql SECURITY DEFINER;

GRANT EXECUTE ON FUNCTION service1.set_employee_salary_v1 TO service;
REVOKE EXECUTE ON FUNCTION service1.set_employee_salary_v1 FROM PUBLIC;
COMMIT WORK;

73 / 111

Foreign Data Wrapper: Public

-- connect to service2 database server

\connect - - - 5433

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

74 / 111

Foreign Data Wrapper: Public

CREATE SERVER postgres_fdw_service1
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host ’localhost’, port ’5432’, dbname ’test’);

CREATE USER MAPPING FOR PUBLIC
SERVER postgres_fdw_service1
OPTIONS (user ’service1’, password ’’);

IMPORT FOREIGN SCHEMA service1_private LIMIT TO (employee)
FROM SERVER postgres_fdw_service1 INTO service1_private;

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

75 / 111

Foreign Data Wrapper: Public

-- create setter function for salary

-- use a transaction block so PUBLIC permission is never visible

BEGIN WORK;
CREATE FUNCTION service1.set_employee_salary_v1

(emp_id service1_private.employee.emp_id%TYPE,
new_salary service1_private.employee.salary%TYPE)
RETURNS VOID

AS $$
UPDATE service1_private.employee
SET salary = new_salary
WHERE service1_private.employee.emp_id = emp_id

$$
LANGUAGE sql SECURITY DEFINER;

GRANT EXECUTE ON FUNCTION service1.set_employee_salary_v1 TO service;
REVOKE EXECUTE ON FUNCTION service1.set_employee_salary_v1 FROM PUBLIC;
COMMIT WORK;

76 / 111

Benefits of Foreign Data Wrapper

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

77 / 111

Materialized FDW View

Database
service1_private service1

Service 1

Database
service1_private service1

Service 2
Users &

1
Service

1_v1
Service

1
Service

1_v1
Service

Materialized FDW views decouple the effects of cross-service downtime, but prevent cross-service writes.

78 / 111

Materialized FDW View: Private

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

79 / 111

Materialized FDW View: Private

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create private table

CREATE TABLE service1_private.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

80 / 111

Materialized FDW View: Public

-- connect to service2 database server

\connect - - - 5433
-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN IN ROLE service;
CREATE ROLE service2 WITH LOGIN IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

81 / 111

Materialized FDW View: Public

CREATE SERVER postgres_fdw_service1
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host ’localhost’, port ’5432’, dbname ’test’);

CREATE USER MAPPING FOR PUBLIC
SERVER postgres_fdw_service1
OPTIONS (user ’service1’, password ’’);

IMPORT FOREIGN SCHEMA service1_private LIMIT TO (employee)
FROM SERVER postgres_fdw_service1 INTO service1_private;

82 / 111

Materialized FDW View: Public

-- create materialized view

CREATE MATERIALIZED VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

-- needed for refresh

CREATE UNIQUE INDEX i_employee_v1 ON service1.employee_v1 (emp_id);

REFRESH MATERIALIZED VIEW CONCURRENTLY service1.employee_v1;

83 / 111

Benefit of Materialized FDW View

Microservices can enable:

• Alignment of product teams with business goals

• Improved software development using smaller teams

• More frequent software deployment

• Easier unit testing

• More flexible scaling

• Customized programming languages and databases

• Improved reliability

84 / 111

Logical Replication

Database
service1_private service1

Service 1

Database
service1_private service1

Service 1 Service 2
Users &

1
Service

Func1_v1

1_v1
Service

Service1_queue

1
Service

Func1_v1

1_v1
Service

Service1_queue

Allows access more current data, while also allowing access during disconnection from other services

85 / 111

Logical Replication: Private

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN REPLICATION IN ROLE service;
CREATE ROLE service2 WITH LOGIN REPLICATION IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

86 / 111

Logical Replication: Private

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create private employee table

CREATE TABLE service1_private.employee (
emp_id SERIAL PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create read-only queue table

CREATE TABLE service1_private.queue (
emp_id INTEGER,
new_salary numeric(10,2),
entry_date TIMESTAMP WITH TIME ZONE

);

87 / 111

Logical Replication: Private

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

88 / 111

Logical Replication: Private

-- create setter function for salary

-- use a transaction block so PUBLIC permission is never visible

BEGIN WORK;
CREATE FUNCTION service1.set_employee_salary_v1

(emp_id service1_private.employee.emp_id%TYPE,
new_salary service1_private.employee.salary%TYPE)
RETURNS VOID

AS $$
INSERT INTO service1_private.queue VALUES (emp_id, new_salary, CURRENT_TIMESTAMP);

$$
LANGUAGE sql SECURITY DEFINER;

GRANT EXECUTE ON FUNCTION service1.set_employee_salary_v1 TO service;
REVOKE EXECUTE ON FUNCTION service1.set_employee_salary_v1 FROM PUBLIC;
COMMIT WORK;

89 / 111

Logical Replication: Private

CREATE FUNCTION service1_private.queue_trigger_func()
RETURNS TRIGGER

AS $$
BEGIN
UPDATE service1_private.employee
SET salary = new.new_salary
WHERE service1_private.employee.emp_id = new.emp_id;
RETURN new;
END

$$
LANGUAGE plpgsql;

90 / 111

Logical Replication: Private

CREATE TRIGGER queue_trigger
BEFORE INSERT ON service1_private.queue
FOR EACH ROW
EXECUTE FUNCTION service1_private.queue_trigger_func();

-- force trigger to run on replica

ALTER TABLE service1_private.queue ENABLE ALWAYS TRIGGER queue_trigger;

-- become superuser

RESET SESSION AUTHORIZATION;

-- create publication

CREATE PUBLICATION pub_employee FOR TABLE service1_private.employee;

91 / 111

Logical Replication: Public

-- connect to service2 database server

\connect - - - 5433

-- create roles

CREATE ROLE service WITH NOLOGIN;

CREATE ROLE service1 WITH LOGIN REPLICATION IN ROLE service;
CREATE ROLE service2 WITH LOGIN REPLICATION IN ROLE service;

-- create private schema

CREATE SCHEMA service1_private;
ALTER SCHEMA service1_private OWNER TO service1;

-- create public schema

CREATE SCHEMA service1;
ALTER SCHEMA service1 OWNER TO service1;

92 / 111

Logical Replication: Public

-- become ’service1’ user

SET SESSION AUTHORIZATION service1;

-- create read-only employee table

CREATE TABLE service1_private.employee (
emp_id INTEGER PRIMARY KEY,
name TEXT UNIQUE NOT NULL,
salary numeric(10,2)

);

-- create write-only queue table

CREATE TABLE service1_private.queue (
emp_id INTEGER,
new_salary numeric(10,2),
entry_date TIMESTAMP WITH TIME ZONE

);

93 / 111

Logical Replication: Public

-- create view

CREATE VIEW service1.employee_v1 AS
SELECT emp_id, name FROM service1_private.employee;

-- give other services read-only access to two columns

GRANT USAGE ON SCHEMA service1 TO service;
GRANT SELECT ON service1.employee_v1 TO service;

94 / 111

Logical Replication: Public

-- create setter function for salary

-- use a transaction block so PUBLIC permission is never visible

BEGIN WORK;
CREATE FUNCTION service1.set_employee_salary_v1

(emp_id service1_private.employee.emp_id%TYPE,
new_salary service1_private.employee.salary%TYPE)
RETURNS VOID

AS $$
INSERT INTO service1_private.queue VALUES (emp_id, new_salary, CURRENT_TIMESTAMP);

$$
LANGUAGE sql SECURITY DEFINER;
GRANT EXECUTE ON FUNCTION service1.set_employee_salary_v1 TO service;
REVOKE EXECUTE ON FUNCTION service1.set_employee_salary_v1 FROM PUBLIC;
COMMIT WORK;

95 / 111

Logical Replication: Public

-- become superuser

RESET SESSION AUTHORIZATION;

-- create publication

CREATE PUBLICATION pub_queue FOR TABLE service1_private.queue;

-- create subscription

CREATE SUBSCRIPTION sub_service1_private_employee
CONNECTION ’dbname=test host=localhost port=5432 user=service1’
PUBLICATION pub_employee;

-- connect to service1 database server

\connect - - - 5432

-- create subscription

CREATE SUBSCRIPTION sub_service1_private_queue
CONNECTION ’dbname=test host=localhost port=5433 user=service1’
PUBLICATION pub_queue;

96 / 111

Logical Replication: Example

INSERT INTO service1_private.employee
VALUES (DEFAULT, ’Sam’, 100);

SELECT * FROM service1_private.employee;
emp_id | name | salary
--------+------+--------

1 | Sam | 100.00

SELECT service1.set_employee_salary_v1(1, 200);
set_employee_salary_v1

(null)

97 / 111

Logical Replication: Example

-- the queue

SELECT * FROM service1_private.queue;
emp_id | new_salary | entry_date
--------+------------+-------------------------------

1 | 200.00 | 2022-02-22 13:10:01.213059-05

SELECT * FROM service1_private.employee;
emp_id | name | salary
--------+------+--------

1 | Sam | 200.00

98 / 111

Logical Replication: Example

-- connect to service2

\connect - - - 5433

SELECT * FROM service1_private.employee;
emp_id | name | salary
--------+------+--------

1 | Sam | 200.00

99 / 111

Logical Replication: Example

-- using public API

SELECT * FROM service1.employee_v1;
emp_id | name
--------+------

1 | Sam

SELECT service1.set_employee_salary_v1(1, 300);
set_employee_salary_v1

(null)

SELECT * FROM service1_private.queue;
emp_id | new_salary | entry_date
--------+------------+-------------------------------

1 | 300.00 | 2022-02-22 13:10:40.706198-05

SELECT * FROM service1_private.employee;
emp_id | name | salary
--------+------+--------

1 | Sam | 300.00 100 / 111

Complexities

• The service’s external API can be table-based or function-based
• I chose reads as table-based, and writes as function-based

• Materialized views need periodic refreshes; data too stale to allow a write API

• Changes to table schemas will require possible recreation of logical replicas and

materialized views

• Multi-database deployments need the ability to update public APIs in all databases

• Remove service queue entries can be added in the same transaction as local service
changes

• however, conflicting service changes might be overwritten

• Old queue table rows will need removed occasionally by each service user
• having entry_date helps with this

101 / 111

7. Tying Microservices Together

https://www.flickr.com/photos/fdecomite/

102 / 111

Data Aggregation

service1
Database

Users &
Services

service2
Database

Users &
Services

service3
Database

Users &
Services

service
Database

Users &
Services

1
Service

2
Service

3
Service

Service 1

Service 2

Service 3

Service data is aggregated in the right server; can be used to perform cross-service joins and data analysis.

103 / 111

Deploying Schema Changes

• Flyway

• Liquibase

https://moduscreate.com/blog/microservices-databases-migrations/

104 / 111

https://moduscreate.com/blog/microservices-databases-migrations/

Debezium Simplifies Adding/Removing Data-Subscribing Services

service2
PG Database

service3
PG Database

service1
PG Database

Kafka Data Bus

Debezium Kafka Source Connector

2
Service

3
Service

1
Service

Debezium reads the Postgres logical replication log to broadcast changes to other services.

https://debezium.io/documentation/reference/stable/connectors/postgresql.html

105 / 111

https://debezium.io/documentation/reference/stable/connectors/postgresql.html

Debezium Can Communicate with Different Database Types

service2
Oracle Database

service3
MongoDB

service1
Postgres Database

Kafka Data Bus

Debezium Kafka Source Connector

2
Service

3
Service

1
Service

https://debezium.io/documentation/reference/stable/architecture.html

106 / 111

https://debezium.io/documentation/reference/stable/architecture.html

Saga Pattern

The saga pattern is like a transaction manager, but is asynchronous with optimistic

commit and undo. Saga patterns create a chain of events to perform multi-service

requests. If any event fails, a set of reversing events undoes the request.

https://www.baeldung.com/cs/saga-pattern-microservices

https://www.youtube.com/watch?v=YPbGW3Fnmbc
https://www.youtube.com/watch?v=STKCRSUsyP0

107 / 111

https://www.baeldung.com/cs/saga-pattern-microservices
https://www.youtube.com/watch?v=YPbGW3Fnmbc
https://www.youtube.com/watch?v=STKCRSUsyP0

Saga Orchestration

Database

Service
User &

Request
Coordinator

service1 service2
Database

service3
Database

1
Service

2
Service

3
Service

108 / 111

Saga Choreography, Event-Driven

service1
Database

Service
User &

Requests

service2
Database

service3
Database

1
Service

2
Service

3
Service

Choreography requests are sent on an event bus and services take action on appropriate messages.

109 / 111

Monolith to Microservices by Sam Newman

1. Just Enough Microservices

2. Planning A Migration

3. Splitting The Monolith

4. Decomposing The Database (81 pages)

5. Growing Pains

6. Closing Words

https://samnewman.io/books/monolith-to-microservices/

110 / 111

https://samnewman.io/books/monolith-to-microservices/

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/146651768@N06/

111 / 111

