Database servers have hardware requirements different from other infrastructure software, specifically unique demands on I/O and memory. This presentation covers these differences and various I/O options and their benefits.

https://momjian.us/presentations

Creative Commons Attribution License

Last updated: September, 2020
Outline

- CPU
- Multi-threading
- GHz
- Pipelining
- SMP
- NUMA
Nope!

- CPU
- Multi-threading
- GHz
- Pipelining
- SMP
- NUMA
Normal Server Priorities

- CPU
- Memory
- I/O
Database Server Priorities

- I/O
- Memory
- CPU

Diagram showing the priorities from bottom to top: I/O, Memory, CPU.
Why the Difference?

Traditional servers are often CPU constrained because of:

- Network overhead (http)
- Text processing (email)
- Virtual machines (application servers)
- Application code
Database Server’s Unique Requirements

- Sequential scans of large tables
- Index scans causing random I/O
- Unpredictable query requirements
- Reporting

These do not require major CPU resources.
ACID (D = durability) requires committed transactions to be stored permanently. Few other server facilities must honor this requirement.
Magnetic Disk I/O Stack

1. PostgreSQL Shared Buffer Cache
2. Kernel Disk Buffer Cache
3. HBA/RAID Cache
4. Disk Cache
5. Magnetic Disk

- Write-Ahead Log
- fsync

- Magnetic Disk
- Write-through
- write-back
- fsync

- PostgreSQL Shared Buffer Cache

9 / 26
Magnetic Disk I/O Stack With BBU

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Cache
- Magnetic Disk

- Write-Ahead Log
 - fsync
 - fsync
 - write-back
Flash / NAND Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Staging Cache
- Flash (NAND) Solid State Disk (SSD)

Flow:
- fsync (PostgreSQL Shared Buffer Cache to Kernel Disk Buffer Cache)
- fsync (Kernel Disk Buffer Cache to HBA/RAID Cache)
- Write-Ahead Log (HBA/RAID Cache)
- write-back (Disk Staging Cache)

Battery Indicators: ?
DRAM Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- DRAM Solid State Disk (SSD)
- Write-Ahead Log

 fsync
 fsync

The diagram shows the flow of data through the various cache levels, with arrows indicating the direction of data transfer.
Write-Back vs. Write-Through Caching

- Write-back caching returns write success before passing data to lower storage layers
- Write-through caching waits for write acknowledgement from lower storage layers before returning success
Caching Layers

- HBA/RAID cache behavior is usually controlled by the HBA/RAID firmware, often conditionally based on the health of the BBU.
- Storage drive cache behavior can be set by utility commands or by using certain operating system calls.
- Enterprise/SAS storage devices usually default to write-through, while consumer/SATA devices usually default to write-back.
HBA/Raid Caching

- HBA/Raid controllers often set storage drive caching mode to write-through
- With an HBA/Raid non-volatile cache, there is little advantage to using write-back mode on storage drives
Magnetic Disk Selection

- More small spindles is better than fewer large spindles
- RAID 5/6 is too slow for database writes
- RAID 10 is popular
- make sure SMART reporting is fully supported
- SAS/SCSI disks are usually designed for enterprise workloads, unlike SATA/ATA
 - reliability
 - error reporting
 - 24-hour operation
 - heat
 - vibration
SSDs

- Flash/NAND vs. DRAM
- Write staging area — it is not just cache
- Running a NAND SSD in write-through mode can reduce its usable life because of increased write cycles
- Best for WAL and random I/O, e.g., indexes
- Set random_page_cost = 1.1
- Set effective_io_concurrency = 256
Filesystem Options

- xfs or ext4 over ext3
- reduce file system logging, particularly for /pg_wal directory
- disable access (atime) recording
Battery-Backed Unit (BBU)

- Verify battery or super-capacitor (supercap) existence visually
- Typically lasts for 48–72 hours
- Some write the cache to local flash memory on power failure
- Detected battery/super-capacitor failure can disable write-back cache mode
- Requires failure monitoring
- Requires replacement
Battery-Backed Unit (BBU)

https://www.flickr.com/photos/jemimus/
Supercapacitor-Backed Unit

https://commons.wikimedia.org/wiki/File:Embedded_World_2014_SSD.jpg
• **SAN** and **NAS** replace direct-attached storage (**DAS**) with shared storage
• Often used for easier storage management
• Shared I/O resource
• Databases often wait for I/O completion, meaning they have to contend with shared resource contention
• **SAN** serves block devices, **NAS** serves file systems
RAM

- The more RAM, the better; this reduces I/O requirements
- Ideally, five minutes of your working set
- The more RAM, the more possibility of RAM failure
- Use ECC (Error Correction Codes) RAM
 - detect errors
 - correct errors
 - report faulty memory
 - cosmic radiation
CPUs

- Parallel query allows a single session to use multiple CPUs
- Heavy use of server-side functions might generate significant CPU load
- CPUs can become a bottleneck if the entire database fits in RAM and the workload is read-only
Just because something has the same interface doesn’t mean has the same capabilities. Compatible computer hardware is not all the same.

https://www.flickr.com/photos/cdevers/
Conclusion

https://momjian.us/presentations