Database servers have hardware requirements different from other infrastructure software, specifically unique demands on I/O and memory. This presentation covers these differences and various I/O options and their benefits.

https://momjian.us/presentations
• CPU
• Multi-threading
• GHz
• Pipelining
• SMP
• NUMA
Nope!

- CPU
- Multi-threading
- GHz
- Pipelining
- SMP
- NUMA
Normal Server Priorities

- CPU
- Memory
- I/O
Database Server Priorities

- I/O
- Memory
- CPU
Traditional servers are often CPU constrained because of:

- Network overhead (http)
- Text processing (email)
- Virtual machines (application servers)
- Application code
Database Server’s Unique Requirements

- Sequential scans of large tables
- Index scans causing random I/O
- Unpredictable query requirements
- Reporting

These do not require major CPU resources.
ACID (D = durability) requires committed transactions to be stored permanently. Few other server facilities must honor this requirement.
Magnetic Disk I/O Stack

- **PostgreSQL Shared Buffer Cache**
- **Write-Ahead Log (fsync)**
- **Kernel Disk Buffer Cache**
- **HBA/RAID Cache**
- **Disk Cache** (write-back)
- **Magnetic Disk** (write-through)
Magnetic Disk I/O Stack With BBU

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Cache
- Magnetic Disk

Available Cache Levels:
- POSTGRESQL SHARED BUFFER CACHE
- KERNEL DISK BUFFER CACHE
- HBA/RAID BUFFER CACHE
- POSTGRES SHARED BUFFER CACHE
- WRITE-AHEAD LOG

Available Cache Cores:
- POSTGRES SHARED BUFFER
- KERNEL DISK BUFFER
- HBA/RAID CACHE
- POSTGRES SHARED BUFFER
- WRITE-AHEAD LOG

Available Write Options:
- POSTGRES \text{write-back}
- WRITE-AHEAD LOG \text{fsync}
- KERNEL DISK BUFFER \text{fsync}
- HBA/RAID CACHE \text{write-back}

Available Cores:
- POSTGRES SHARED BUFFER
- KERNEL DISK BUFFER
- HBA/RAID CACHE
- POSTGRES SHARED BUFFER
- WRITE-AHEAD LOG

Available Options:
- POSTGRES \text{write-back}
- WRITE-AHEAD LOG \text{fsync}
- KERNEL DISK BUFFER \text{fsync}
- HBA/RAID CACHE \text{write-back}
Flash (NAND) Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Staging Cache
- Flash (NAND) Solid State Disk (SSD)

- Write-Ahead Log (fsync)
- Kernel Disk Buffer Cache (fsync)
- HBA/RAID Cache (write-back)
- Disk Staging Cache
- Flash (NAND) Solid State Disk (SSD)
DRAM Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- DRAM Solid State Disk (SSD)

- Write-Ahead Log
 - fsync
Write-Back vs. Write-Through Caching

- Write-back caching returns write success before passing data to lower storage layers.
- Write-through caching waits for write acknowledgement from lower storage layers before returning success.
Caching Layers

- HBA/RAID cache behavior is usually controlled by the HBA/RAID firmware, often conditionally based on the health of the BBU.
- Storage drive cache behavior can be set by utility commands or by using certain operating system calls.
- Enterprise/SAS storage devices usually default to write-through, while consumer/SATA devices usually default to write-back.
HBA/RAID Caching

- HBA/RAID controllers often set storage drive caching mode to write-through
- With an HBA/RAID non-volatile cache, there is little advantage to using write-back mode on storage drives
Durable Cache: Battery and Supercapacitor-Backed Units

- Verify battery or supercapacitor (supercap) existence visually
- Most write the cache to local flash memory on power failure
- Battery-backed units (BBU)
 - Detected battery failure can disable write-back cache mode
 - Requires failure monitoring and replacement
- Look for a feature called “power loss protection”
Battery-Backed Unit on RAID Controller

https://www.flickr.com/photos/jeminus/
Supercapacitor-Backed Unit on SSD

Also called “power loss protection”

https://commons.wikimedia.org/wiki/File:Embedded_World_2014_SSD.jpg
Magnetic Disk Selection

- More small spindles is better than fewer large spindles
- RAID 5/6 is too slow for database writes
- RAID 10 is popular
- Make sure SMART reporting is fully supported
- SAS/SCSI disks are usually designed for enterprise workloads, unlike SATA/ATA
 - reliability
 - error reporting
 - 24-hour operation
 - heat
 - vibration
SSD Selection

- Flash (NAND) vs. DRAM: https://appuals.com/ssd-buying-guide/
- Write staging area — it is not just cache
- Running a flash (NAND) SSD in write-through mode can reduce its usable life because of increased write cycles
Configuring Postgres for SSDs

- Best for WAL and random I/O, e.g., indexes
- Set `random_page_cost = 1.1`
- Set `effective_io_concurrency` to 256 for SATA, 1,000 for NVMe
Filesystem Options

- xfs or ext4 over ext3
- Reduce file system logging, particularly for pg_wal/ directory
- Disable access (atime) recording
• SAN and NAS replace direct-attached storage (DAS) with shared storage
• Often used for easier storage management
• Shared I/O resource
• Databases often wait for I/O completion, meaning they have to contend with shared resource contention
• SAN serves block devices, NAS serves file systems
• The more RAM, the better; this reduces I/O requirements
• Ideally, five minutes of your working set
• The more RAM, the more possibility of RAM failure
• Use ECC (Error Correction Codes) RAM
 • detect errors
 • correct errors
 • report faulty memory
 • cosmic radiation
CPUs

- Parallel query allows a single session to use multiple CPUs
- Heavy use of server-side functions might generate significant CPU load
- CPUs can become a bottleneck if the entire database fits in RAM and the workload is read-only
Not the Same

Just because something has the same interface doesn’t mean has the same capabilities. Compatible computer hardware is not all the same.

https://www.flickr.com/photos/cdevers/
Conclusion

https://momjian.us/presentations