
Major Features: Postgres 16

BRUCE MOMJIAN

POSTGRESQL is an open-source, full-featured relational database. This presentation

gives an overview of the Postgres 16 release.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: October 2023

1 / 19

Postgres 16 Feature Outline

1. Logical replication from standby servers

2. Allow logical replication cycles

3. Role membership control

4. Allow indexes to use date_trunc()

5. Record statistics on the last sequential and index scans

6. Allow monitoring of I/O statistics

7. CPU vectorization

8. Allow libpq load balancing and control of authentication

Full item list at https://momjian.us/pgsql_docs/release-16.html and https://www.postgresql.org/
docs/16/release-16.html.

2 / 19

https://momjian.us/pgsql_docs/release-16.html
https://www.postgresql.org/docs/16/release-16.html
https://www.postgresql.org/docs/16/release-16.html

1. Logical Replication from Standby Servers

Primary

Physical Replicas

3 / 19

Pre-Postgres 16 Supports Only Primary-Sourced Logical Subscribers

Primary

Pre−PG 16 Logical Subscribers

4 / 19

Postgres 16 Supports Standby-Sourced Logical Subscribers

Primary

Postgres 16

Physical Replicas

Logical Subscribers

5 / 19

2. Allow Logical Replication Cycles

PG 16 Logical Subscribers

on the Same Table

This is done by creating subscriptions with slotname = none, which causes only logical

replication records with no slotname to be sent. This prevents records that arrived from

other servers from being sent. There is no conflict resolution.

6 / 19

3. Role Membership Control

Role membership give two advantages:

• The ability to automatically INHERIT permissions of member roles

• The ability to execute queries as the member role via SET ROLE

• https://www.postgresql.org/docs/current/role-membership.html

Postgres 16 adds:

• Allow roles to INHERIT from only some members

• Allow members to be added to roles without giving them SET ROLE permission via

SET ROLE FALSE

• Allow members to be added to roles if they have ADMIN permission on the role;

previously create role permission was required

• Allow users who create roles to be automatically given INHERIT or SET ROLE abilities

to the new role via createrole_self_grant

• Add psql \drg command to show role members and their INHERIT and SET ROLE

permissions
7 / 19

https://www.postgresql.org/docs/current/role-membership.html

Inheritance in Pre-Postgres 16

-- create role

CREATE ROLE a1;
CREATE ROLE b INHERIT;
GRANT a1 TO b;

-- create table

GRANT CREATE ON SCHEMA public TO a1;
SET ROLE a1;
CREATE TABLE a1_test (x INTEGER);
RESET ROLE;

-- SELECT table as ’b’

SET ROLE b;
SELECT * FROM a1_test;
x

RESET ROLE;

-- change role inheritance status

ALTER USER b NOINHERIT;

-- SELECT table as ’b’

SET ROLE b;
SELECT * FROM a1_test;
ERROR: permission denied for table a1_test
RESET ROLE;

8 / 19

Inheritance in Postgres 16

-- create role

CREATE ROLE a1;
CREATE ROLE b INHERIT;
GRANT a1 TO b;

-- create table

GRANT CREATE ON SCHEMA public TO a1;
SET ROLE a1;
CREATE TABLE a1_test (x INTEGER);
RESET ROLE;

-- SELECT table as ’b’

SET ROLE b;
SELECT * FROM a1_test;
x

RESET ROLE;

-- change role inheritance status

ALTER USER b NOINHERIT;

-- SELECT table as ’b’

SET ROLE b;
SELECT * FROM a1_test;
x

RESET ROLE;

9 / 19

Inheritance in Postgres 16

-- create roles

CREATE ROLE a2;
CREATE ROLE a3;
CREATE ROLE a4;

-- grant membership

GRANT a2 TO b;
GRANT a3 TO b WITH INHERIT TRUE;
GRANT a4 TO b WITH INHERIT FALSE;

\drg
List of role grants

Role name | Member of | Options | Grantor
-----------+-----------+--------------+----------
b | a1 | INHERIT, SET | postgres
b | a2 | SET | postgres
b | a3 | INHERIT, SET | postgres
b | a4 | SET | postgres

10 / 19

4. Allow Indexes to Use date_trunc()

CREATE TABLE trunc_test (x TIMESTAMP WITH TIME ZONE);

CREATE INDEX i_trunc_test ON trunc_test (date_trunc(’month’, x));
ERROR: functions in index expression must be marked IMMUTABLE

CREATE INDEX i_trunc_test ON trunc_test (date_trunc(’month’, x, ’America/New_York’));

\d trunc_test
Table "public.trunc_test"

Column | Type | Collation | Nullable | Default
--------+--------------------------+-----------+----------+---------
x | timestamp with time zone | | |
Indexes:

"i_trunc_test" btree (date_trunc(’month’::text, x, ’America/New_York’::text))

11 / 19

5. Record Statistics on the Last Sequential and Index Scans

\d pg_stat_user_tables
View "pg_catalog.pg_stat_user_tables"

Column | Type | Collation | Nullable | Default
---------------------+--------------------------+-----------+----------+---------
relid | oid | | |
schemaname | name | | |
relname | name | | |
seq_scan | bigint | | |
last_seq_scan | timestamp with time zone | | |
seq_tup_read | bigint | | |
idx_scan | bigint | | |
last_idx_scan | timestamp with time zone | | |
idx_tup_fetch | bigint | | |
n_tup_ins | bigint | | |
n_tup_upd | bigint | | |
n_tup_del | bigint | | |
n_tup_hot_upd | bigint | | |
n_tup_newpage_upd | bigint | | |
n_live_tup | bigint | | |
n_dead_tup | bigint | | |
n_mod_since_analyze | bigint | | |
n_ins_since_vacuum | bigint | | |
last_vacuum | timestamp with time zone | | |
last_autovacuum | timestamp with time zone | | |
last_analyze | timestamp with time zone | | |
last_autoanalyze | timestamp with time zone | | |
vacuum_count | bigint | | |
autovacuum_count | bigint | | |
analyze_count | bigint | | |
autoanalyze_count | bigint | | |

12 / 19

Record Statistics on the Last Sequential and Index Scans

\d pg_stat_user_indexes
View "pg_catalog.pg_stat_user_indexes"

Column | Type | Collation | Nullable | Default
---------------+--------------------------+-----------+----------+---------
relid | oid | | |
indexrelid | oid | | |
schemaname | name | | |
relname | name | | |
indexrelname | name | | |
idx_scan | bigint | | |
last_idx_scan | timestamp with time zone | | |
idx_tup_read | bigint | | |
idx_tup_fetch | bigint | | |

13 / 19

6. Allow Monitoring of I/O Statistics

\d pg_stat_io
View "pg_catalog.pg_stat_io"

Column | Type | Collation | Nullable | Default
----------------+--------------------------+-----------+----------+---------
backend_type | text | | |
object | text | | |
context | text | | |
reads | bigint | | |
read_time | double precision | | |
writes | bigint | | |
write_time | double precision | | |
writebacks | bigint | | |
writeback_time | double precision | | |
extends | bigint | | |
extend_time | double precision | | |
op_bytes | bigint | | |
hits | bigint | | |
evictions | bigint | | |
reuses | bigint | | |
fsyncs | bigint | | |
fsync_time | double precision | | |
stats_reset | timestamp with time zone | | |

14 / 19

Types of Recorded Statistics
SELECT backend_type, object, context FROM pg_stat_io;

backend_type | object | context
---------------------+---------------+-----------
autovacuum launcher | relation | bulkread
autovacuum launcher | relation | normal
autovacuum worker | relation | bulkread
autovacuum worker | relation | normal
autovacuum worker | relation | vacuum
client backend | relation | bulkread
client backend | relation | bulkwrite
client backend | relation | normal
client backend | relation | vacuum
client backend | temp relation | normal
background worker | relation | bulkread
background worker | relation | bulkwrite
background worker | relation | normal
background worker | relation | vacuum
background worker | temp relation | normal
background writer | relation | normal
checkpointer | relation | normal
standalone backend | relation | bulkread
standalone backend | relation | bulkwrite
standalone backend | relation | normal
standalone backend | relation | vacuum
startup | relation | bulkread
startup | relation | bulkwrite
startup | relation | normal
startup | relation | vacuum
walsender | relation | bulkread
walsender | relation | bulkwrite
…

15 / 19

Sample Statistics

SELECT *
FROM pg_stat_io
WHERE backend_type = ’client backend’ AND

object = ’relation’ AND
context = ’normal’;

-[RECORD 1]--+------------------------------
backend_type | client backend
object | relation
context | normal
reads | 3705962
read_time | 0
writes | 2216017
write_time | 0
writebacks | 0
writeback_time | 0
extends | 20125
extend_time | 0
op_bytes | 8192
hits | 81950274
evictions | 3714568
reuses | (null)
fsyncs | 0
fsync_time | 0
stats_reset | 2023-08-23 21:30:36.252786-04

16 / 19

7. CPU Vectorization

• Allow JSON string parsing to use vector operations

• Add support for SSE2 (Streaming SIMD Extensions 2) vector operations on x86-64

architectures

• Add support for Advanced SIMD (Single Instruction Multiple Data) (NEON)

instructions on ARM architectures

17 / 19

8. Allow libpq Load Balancing and Control of Authentication

• libpq connection option load_balance_hosts=random now randomly chooses a
listed host

• combined with target_session_attrs=standby, this allows load balancing among
standby servers

• libpq option require_auth allows client to specify acceptable authentication methods

• for example, require_auth=scram-sha-256 prevents other password methods from
being used

18 / 19

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/thomasletholsen/

19 / 19

