
Major Features: Postgres 17

BRUCE MOMJIAN

POSTGRESQL is an open-source, full-featured relational database. This presentation

gives an overview of the Postgres 17 release.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: February 2025

1 / 29

Postgres 17 Feature Outline

1. Incremental backup

2. Improved data manipulation

3. Improved optimizer handling

4. Improved logical replicas

Full item list at https://www.postgresql.org/docs/17/release-17.html.
2 / 29

https://www.postgresql.org/docs/17/release-17.html

1. Incremental Backup: Backup Methods

Postgres supports three main backup methods:

• File system backup/snapshot

• Logical backup, e.g., pg_dump

• Continuous archiving

This last method is preferred because it allows recovery to arbitrary times, including up

to the most recent transactions. Replicas and delayed-replay replicas are more for
failover than backup.

3 / 29

Continuous Archiving

02
:0

0

11
:0

0

09
:0

0

13
:0

0

W
AL

W
ALWAL

ContinuousFile System−

Level Backup Archive (WAL)

4 / 29

Point-in-Time Recovery

W
AL

W
AL

17
:0

0

17
:3

0

17
:4

0

17
:5

5

ContinuousFile System−

Level Backup Archive (WAL)

WAL

5 / 29

Continuous Archiving Challenges

Continuous archiving requires a file system backup, even one taken while the database is

active, plus write-ahead log (WAL) generated from the time of the backup to the restore

time. This has some challenges:

• Replay of the WAL from the time of the backup to the recovery time can be slow

• Replay time can be reduced by requiring FEWER WAL files from being processed

• This can be accomplished with more frequent file system backups

• Unfortunately file system backups are large and require a lot of I/O

6 / 29

Incremental Backups

Postgres’s incremental backup feature solves these problems:

• Can create an incremental file system backup via pg_basebackup
• only records data blocks modified since the last full or incremental backup

• Combine a full backup with incremental backups to create a newer full backup, via
pg_combinebackup

• requires fewer WAL files to restore
• faster restores

• Combining does not need access to the data directory so it can be done on a

separate server

• Existing backup tools could already produce incremental backups, but with poorer

granularity or more overhead, e.g. pg_backrest, Barman

https://pganalyze.com/blog/5mins-postgres-17-incremental-backups

7 / 29

https://pganalyze.com/blog/5mins-postgres-17-incremental-backups

Point-in-Time Recovery with Incremental Backup

W
AL

W
AL

17
:0

0

17
:3

0

17
:4

0

17
:5

5

ContinuousNew Full

Backup Archive (WAL)

WAL

Backup

IncrementalOld Full

Backup

pg_basebackup

pg_combinebackup

8 / 29

pg_combinebackup

-- apply one incremental to create a new full backup
-- full_backup2 is now current as of the end of incremental1’s backup
$ pg_combinebackup full_backup1 incremental1 -o full_backup2

-- apply three incrementals to create a new full backup
$ pg_combinebackup full_backup2 incremental2 incremental3 incremental4 -o full_backup3

9 / 29

New Deployment Options

• Keep the base backup unchanged:
• create many incremental backups
• incremental recovery is faster than WAL replay
• discard WAL for time spans that don’t need granular recovery

• Keep the base backup current
• use pg_combinebackup to keep the base backup current by applying frequent

incremental backups
• this is only possible when desired recovery point is short
• at a rapid frequency, it starts to have options like replicas, but with heavy I/O overhead

• Make a copy of the base backup
• keep the copy current by applying incremental backups frequently
• this can greatly reduce recovery time because there is minimal WAL to replay
• this does not reduce the recovery time window because the old base backup, and

necessary WAL, are kept

http://rhaas.blogspot.com/2024/01/incremental-backups-evergreen-and-other.html

10 / 29

http://rhaas.blogspot.com/2024/01/incremental-backups-evergreen-and-other.html

pg_combinebackup Removal

-- apply one incremental to create a new full backup
$ pg_combinebackup full_backup3 incremental5 -o full_backup4

-- If we don’t need to recover to any time earlier than the end of incremental5,
-- we can delete the previous full backup and incremental5, and all needed WAL
$ rm -r full_backup3 incremental5

-- do it again
$ pg_combinebackup full_backup4 incremental6 -o full_backup5
$ rm -r full_backup4 incremental6

11 / 29

2. Improved Data Manipulation

1. JSON_TABLE()

2. COPY

3. MERGE

12 / 29

2.1 JSON_TABLE()

SELECT *
FROM JSON_TABLE(’{"key1": "val1"}’,

’$.key1’ COLUMNS (col1 text PATH ’$’);
col1

val1

SELECT *
FROM JSON_TABLE(’{"key1": "val1", "key2": "val2"}’,

’$[*]’ COLUMNS (key1 text PATH ’$.key1’, key2 text PATH ’$.key2’));
key1 | key2
------+------
val1 | val2

https://www.depesz.com/2024/10/11/sql-json-is-here-kinda-waiting-for-pg-17/

13 / 29

https://www.depesz.com/2024/10/11/sql-json-is-here-kinda-waiting-for-pg-17/

Load JSONB Data

-- download sample data from https://www.mockaroo.com/
-- remove ’id’ column, output as JSON, uncheck ’array’
CREATE TABLE friend (id SERIAL, data JSONB);

COPY friend (data) FROM ’/tmp/MOCK_DATA.json’;

SELECT *
FROM friend
ORDER BY 1
LIMIT 2;
id | data
----+---…

1 | {"email": "sbouzan0@wikispaces.com", "gender": "Female", …
2 | {"email": "ebruffell1@independent.co.uk", "gender": "Male", …

14 / 29

Pretty Print JSON

SELECT id, jsonb_pretty(data)
FROM friend
ORDER BY 1
LIMIT 1;
id | jsonb_pretty
----+---

1 | { +
| "email": "sbouzan0@wikispaces.com",+
| "gender": "Female", +
| "last_name": "Bouzan", +
| "first_name": "Sher", +
| "ip_address": "89.153.16.253" +
| }

15 / 29

JSON_TABLE()

SELECT json.first_name, json.last_name, json.email
FROM friend, JSON_TABLE(data,

’$[*]’ COLUMNS (first_name TEXT PATH ’$.first_name’,
last_name TEXT PATH ’$.last_name’,
email TEXT PATH ’$.email’)) AS json

ORDER BY random()
LIMIT 5;

first_name | last_name | email
-------------+--------------+-------------------------------
Abbey | Terbeck | aterbeckf7@latimes.com
Giustino | Weeke | gweekerm@fastcompany.com
Bailey | Romi | bromibc@desdev.cn
Guillemette | Hastwell | ghastwell6l@microsoft.com
Cherise | Biermatowicz | cbiermatowicz3c@google.com.hk

16 / 29

2.2 COPY Error Handling

CREATE TABLE copy_test (int_col INTEGER, date_col DATE, jsonb_col JSONB);

COPY copy_test (int_col) FROM STDIN;
test> 1
test> 2
test> x
test> \.
ERROR: invalid input syntax for type integer: "x"
CONTEXT: COPY copy_test, line 3, column int_col: "x"

SELECT *
FROM copy_test;
int_col | date_col | jsonb_col
---------+----------+-----------

17 / 29

COPY Ignore Errors

COPY copy_test (int_col) FROM STDIN WITH (ON_ERROR ignore);
test> 3
test> 4
test> a
test> \.
NOTICE: 1 row was skipped due to data type incompatibility

SELECT * FROM copy_test;
int_col | date_col | jsonb_col
---------+----------+-----------

3 | (null) | (null)
4 | (null) | (null)

18 / 29

COPY Report Error Rows

COPY copy_test (int_col) FROM STDIN WITH (ON_ERROR ignore, LOG_VERBOSITY verbose);
test> 5
test> 6
test> b
test> \.
NOTICE: skipping row due to data type incompatibility at line 3 for column "int_col": "b"
NOTICE: 1 row was skipped due to data type incompatibility

SELECT * FROM copy_test;
int_col | date_col | jsonb_col
---------+----------+-----------

3 | (null) | (null)
4 | (null) | (null)
5 | (null) | (null)
6 | (null) | (null)

19 / 29

2.3 MERGE Improvements

• Allow MERGE to modify updatable views

• Add WHEN NOT MATCHED BY SOURCE

• Allow MERGE to use the RETURNING clause

20 / 29

3. Improved Optimizer Handling

1. CTE passdown

2. NULL optimizations

3. Correlated subquery optimization

4. Other

21 / 29

3.1 CTE Passdown

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

) -- statistics and sort order are passed down here
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;

22 / 29

3.2 NULL Optimizations

CREATE TABLE null_test (not_null_col INTEGER NOT NULL,
opt_null_col INTEGER);

-- This disables EXPLAIN cost output
\set EXPLAIN ’EXPLAIN (COSTS OFF)’

:EXPLAIN SELECT *
FROM null_test;

QUERY PLAN

Seq Scan on null_test

-- no sequential scan
:EXPLAIN SELECT *
FROM null_test
WHERE not_null_col IS NULL;

QUERY PLAN

Result

One-Time Filter: false

23 / 29

NULL Optimizations

:EXPLAIN SELECT *
FROM null_test
WHERE opt_null_col IS NOT NULL;

QUERY PLAN

Seq Scan on null_test

Filter: (opt_null_col IS NOT NULL)

-- no ’Filter’ clause
:EXPLAIN SELECT *
FROM null_test
WHERE not_null_col IS NOT NULL;

QUERY PLAN

Seq Scan on null_test

24 / 29

3.3 Correlated Subqueries in Postgres 16

:EXPLAIN SELECT COUNT(*)
FROM pg_class
WHERE oid IN (

SELECT attrelid
FROM pg_attribute
WHERE attrelid = pg_class.oid

);
QUERY PLAN

Aggregate

-> Seq Scan on pg_class
Filter: (SubPlan 1)
SubPlan 1
-> Index Only Scan using pg_attribute_relid_attnum_index on pg_attribute

Index Cond: (attrelid = pg_class.oid)

25 / 29

Correlated Subqueries Now as Joins

:EXPLAIN SELECT COUNT(*)
FROM pg_class
WHERE oid IN (

SELECT attrelid
FROM pg_attribute
WHERE attrelid = pg_class.oid

);
QUERY PLAN

Aggregate

-> Hash Join
Hash Cond: (pg_class.oid = pg_attribute.attrelid)
-> Seq Scan on pg_class
-> Hash

-> HashAggregate
Group Key: pg_attribute.attrelid, pg_attribute.attrelid
-> Seq Scan on pg_attribute

26 / 29

3.4 Other Optimizer Improvements

• Partition pruning for boolean columns

• Range value containment

• Optimize LIMIT on partitions

• Allow GROUP BY to be reordered to match ORDER BY

• Improve Merge Append *

• More parallelism

* https://momjian.us/main/presentations/performance.html#beyond

27 / 29

https://momjian.us/main/presentations/performance.html#beyond

4. Improved Logical Replication

• Add tool pg_createsubscriber to allow creation of logical replicas from physical ones

• Enable failover of logical replication slots

• Enable pg_upgrade to preserve logical replication slots in future major upgrades

http://amitkapila16.blogspot.com/2024/10/failover-slots-in-postgresql-17.html

28 / 29

http://amitkapila16.blogspot.com/2024/10/failover-slots-in-postgresql-17.html

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/thomasletholsen/

29 / 29

