Major Features: Postgres 17

BRUCE MOMJIAN

COEDB

POSTGRESQL is an open-source, full-featured relational database. This presentation
gives an overview of the Postgres 17 release.

https://momjian.us/presentations Creative Commons Attribution License
4

Last updated: February 2025

1/29

Postgres 17 Feature Outline

1. Incremental backup

2. Improved data manipulation
3. Improved optimizer handling
4

. Improved logical replicas

Full item list at https://www.postgresql.org/docs/17/release-17.html.
2/29

https://www.postgresql.org/docs/17/release-17.html

1. Incremental Backup: Backup Methods

Postgres supports three main backup methods:
e File system backup/snapshot
e Logical backup, e.g., pg_dump
e Continuous archiving

This last method is preferred because it allows recovery to arbitrary times, including up
to the most recent transactions. Replicas and delayed-replay replicas are more for
failover than backup.

3/29

Continuous Archiving

Q Q Q Q
&Q Q@’Q \\Q \%Q
\Y%
File System- Continuous

Level Backup Archive (WAL)

4/29

Point-in-Time Recovery

WAL

Q
Q
X\ /

File System— Continuous
Level Backup Archive (WAL)

5/29

Continuous Archiving Challenges

Continuous archiving requires a file system backup, even one taken while the database is
active, plus write-ahead log (WAL) generated from the time of the backup to the restore
time. This has some challenges:

Replay of the WAL from the time of the backup to the recovery time can be slow

Replay time can be reduced by requiring FEWER WAL files from being processed

This can be accomplished with more frequent file system backups

Unfortunately file system backups are large and require a lot of /O

6/29

Incremental Backups

Postgres’s incremental backup feature solves these problems:
e Can create an incremental file system backup via pg_basebackup
® only records data blocks modified since the last full or incremental backup

e Combine a full backup with incremental backups to create a newer full backup, via
pg_combinebackup

® requires fewer WAL files to restore
e faster restores

e Combining does not need access to the data directory so it can be done on a
separate server

e Existing backup tools could already produce incremental backups, but with poorer
granularity or more overhead, e.g. pg backrest, Barman

https://pganalyze.com/blog/5mins-postgres-17-incremental-backups

7129

https://pganalyze.com/blog/5mins-postgres-17-incremental-backups

Point-in-Time Recovery with Incremental Backup

Q Q Q %)
M]
Q0 Q0 Q- Q0
WAL N
N\
Old Full Incremental New Full Continuous

Backup Backup Backup Archive (WAL)

pg_b%%:p &‘ ¢

pg_combinebackup

8/29

pg_combinebackup

-- apply one incremental to create a new full backup
-- full_backup2? is now current as of the end of incrementall's backup
$ pg_combinebackup full backupl incrementall -o full backup2

-- apply three incrementals to create a new full backup
$ pg_combinebackup full backup2 incremental2 incremental3 incremental4 -o full backup3

9/29

New Deployment Options

e Keep the base backup unchanged:

® create many incremental backups

® incremental recovery is faster than WAL replay

¢ discard WAL for time spans that don’t need granular recovery
e Keep the base backup current

® use pg combinebackup to keep the base backup current by applying frequent

incremental backups

¢ this is only possible when desired recovery point is short

® at arapid frequency, it starts to have options like replicas, but with heavy I/O overhead
e Make a copy of the base backup

® keep the copy current by applying incremental backups frequently

¢ this can greatly reduce recovery time because there is minimal WAL to replay

® this does not reduce the recovery time window because the old base backup, and
necessary WAL, are kept

http://rhaas.blogspot.com/2024/01/incremental-backups-evergreen-and-other.html

10/29

http://rhaas.blogspot.com/2024/01/incremental-backups-evergreen-and-other.html

pg_combinebackup Removal

-- apply one incremental to create a new full backup
$ pg_combinebackup full backup3 incremental5 -o full backup4

-- If we don't need to recover to any time earlier than the end of incremental5,
-- we can delete the previous full backup and incremental5, and all needed WAL
$ rm -r full _backup3 incremental5

-- do it again

$ pg_combinebackup full backup4 incremental6 -o full backup5
$ rm -r full_backup4 incremental6

11/29

2. Improved Data Manipulation

1. JSON_TABLE()
2. Cory
3. MERGE

12/29

2.1 JSON_TABLE()

SELECT *
FROM JSON_TABLE('{"keyl": "vall"}',
'$.keyl' COLUMNS (coll text PATH '$');

SELECT *
FROM JSON TABLE('{"keyl": "vall", "key2": "val2"}',
'$*]' COLUMNS (keyl text PATH '$.keyl', key2 text PATH '$.key2'));
keyl | key2
______ oo
vall | val2

https://www.depesz.com/2024/10/11/sq1-json-1is-here-kinda-waiting- for-pg-17/

13/29

https://www.depesz.com/2024/10/11/sql-json-is-here-kinda-waiting-for-pg-17/

Load JSONB Data

-- download sample data from https://www.mockaroo.com/
-- remove 'id' column, output as JSON, uncheck 'array'
CREATE TABLE friend (id SERIAL, data JSONB);

COPY friend (data) FROM '/tmp/MOCK DATA.json';

SELECT *

FROM friend

ORDER BY 1

LIMIT 2;

id | data

B e e e e .
1| {"email": "shouzanO@wikispaces.com", "gender": "Female", ..
2 | {"email": "ebruffelll@independent.co.uk", "gender": "Male", ..

14/29

Pretty Print JSON

SELECT id, jsonb pretty(data)
FROM friend

ORDER BY 1

LIMIT 1;

id | jsonb_pretty

R

1] { +

| "email": "sbhouzanO@wikispaces.com",+
| "gender": "Female", +
| "last_name": "Bouzan", +
| "first _name": "Sher", +
| "ip_address": "89.153.16.253" +
|

15/29

JSON_TABLE()

SELECT json.first name, json.last name, json.email
FROM friend, JSON_TABLE (data,
"$[*]' COLUMNS (first name TEXT PATH '$.first name',
Tast_name TEXT PATH '$.last name',
email TEXT PATH '$.email')) AS json
ORDER BY random()

LIMIT 5;

first_name | Tlast_name | email
_____________ S S PP
Abbey | Terbeck | aterbeckf7@latimes.com
Giustino | Weeke | gweekerm@fastcompany.com
Bailey | Romi | bromibc@desdev.cn

Guillemette | Hastwell | ghastwell61@microsoft.com
Cherise | Biermatowicz | chiermatowicz3c@google.com.hk

16/29

2.2 CoPY Error Handling

CREATE TABLE copy test (int_col INTEGER, date col DATE, jsonb col JSONB);

COPY copy test (int_col) FROM STDIN;

test> 1

test> 2

test> x

test> \.

ERROR: invalid input syntax for type integer: "x"
CONTEXT: COPY copy_test, Tine 3, column int col: "x"

SELECT *

FROM copy_test;

int_col | date _col | jsonb col
_________ [T Y TSNP SIRRNE URp

17/29

Copy Ignore Errors

COPY copy test (int_col) FROM STDIN WITH (ON_ERROR ignore);
test> 3
test> 4
test> a
test> \.
NOTICE: 1 row was skipped due to data type incompatibility

SELECT * FROM copy_test;
int_col | date col | jsonb col

null) | (null)
null) | (null)

—_

18/29

CopY Report Error Rows

COPY copy test (int_col) FROM STDIN WITH (ON_ERROR ignore, LOG_VERBOSITY verbose);

test> 5

test> 6

test> b

test> \.

NOTICE: skipping row due to data type incompatibility at line 3 for column "int _col": "b"
NOTICE: 1 row was skipped due to data type incompatibility

SELECT * FROM copy_test;
int_col | date col | jsonb col

_________ L S T pUIpUIp U
3] (null) | (null)
4 | (null) | (null)
5| (null) | (null)
6 | (null) | (null)

19/29

2.3 MERGE Improvements

¢ Allow MERGE to modify updatable views
e Add WHEN NOT MATCHED BY SOURCE
e Allow MERGE to use the RETURNING clause

20/29

3. Improved Optimizer Handling

1. CTE passdown

2. NULL optimizations

3. Correlated subquery optimization
4. Other

21/29

3.1 CTE Passdown

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = 'pg class'),
oid
FROM pg_class
WHERE relname = 'deptest'
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)
) -- statistics and sort order are passed down here
SELECT (SELECT relname FROM pg class WHERE oid = classid) AS class,
(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint
FROM dep
ORDER BY obj;

22/29

3.2 NULL Optimizations

CREATE TABLE null_test (not_null_col INTEGER NOT NULL,
opt null_col INTEGER);

-- This disables EXPLAIN cost output
\set EXPLAIN 'EXPLAIN (COSTS OFF)'

:EXPLAIN SELECT *
FROM null_test;
QUERY PLAN

Seq Scan on null_test

-- no sequential scan
:EXPLAIN SELECT *
FROM null_test
WHERE not null _col IS NULL;
QUERY PLAN
Result
One-Time Filter: false

23/29

NULL Optimizations

:EXPLAIN SELECT *
FROM null_test
WHERE opt null col IS NOT NULL;
QUERY PLAN
Seq Scan on null_test
Filter: (opt_null_col IS NOT NULL)

-- no 'Filter' clause

:EXPLAIN SELECT *

FROM null_test

WHERE not null col IS NOT NULL;
QUERY PLAN

Seq Scan on null_test

24/29

3.3 Correlated Subqueries in Postgres 16

:EXPLAIN SELECT COUNT(*)
FROM pg_class
WHERE oid IN (
SELECT attrelid
FROM pg_attribute
WHERE attrelid = pg class.oid

QUERY PLAN
Aggregate
-> Seq Scan on pg_class
Filter: (SubPlan 1)
SubPlan 1
-> Index Only Scan using pg_attribute_relid_attnum index on pg_attribute
Index Cond: (attrelid = pg class.oid)

25/29

Correlated Subqueries Now as Joins

:EXPLAIN SELECT COUNT(*)
FROM pg_class
WHERE oid IN (
SELECT attrelid
FROM pg_attribute
WHERE attrelid = pg class.oid

QUERY PLAN
Aggregate
-> Hash Join
Hash Cond: (pg class.oid = pg_attribute.attrelid)
-> Seq Scan on pg_class
-> Hash
-> HashAggregate
Group Key: pg attribute.attrelid, pg_attribute.attrelid
-> Seq Scan on pg_attribute

26/29

3.4 Other Optimizer Improvements

Partition pruning for boolean columns

Range value containment

Optimize LIMIT on partitions

Allow GROUP BY to be reordered to match ORDER BY
Improve Merge Append *

More parallelism

* https://momjian.us/main/presentations/performance.html#beyond

27/29

https://momjian.us/main/presentations/performance.html#beyond

4. Improved Logical Replication

e Add tool pg createsubscriber to allow creation of logical replicas from physical ones
e Enable failover of logical replication slots

e Enable pg upgrade to preserve logical replication slots in future major upgrades

http://amitkapilal6.blogspot.com/2024/10/failover-slots-in-postgresql-17.html

28/29

http://amitkapila16.blogspot.com/2024/10/failover-slots-in-postgresql-17.html

Conclusion

O

i[=]
R bitps://momjian.us/presentations bttps:/wwiwflickr.com/photos/thomasletholsen]
[=]:5
29/29

