
Programming the SQL Way with Common Table Expressions

BRUCE MOMJIAN

Common Table Expressions (CTEs) allow queries to be more imperative, allowing

looping and processing hierarchical structures that are normally associated only with

imperative languages.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: February 2023

1 / 96

Outline

1. Imperative vs. declarative

2. Syntax

3. Recursive CTEs

4. Examples

5. Writable CTEs

6. Why use CTEs

2 / 96

1. Imperative vs. Declarative

https://www.flickr.com/photos/visit_cape_may/

3 / 96

Imperative Programming Languages

In computer science, imperative programming is a programming paradigm that describes

computation in terms of statements that change a program state. In much the same way

that imperative mood in natural languages expresses commands to take action,

imperative programs define sequences of commands for the computer to perform.

http://en.wikipedia.org/wiki/Imperative_programming

4 / 96

http://en.wikipedia.org/wiki/Imperative_programming

Declarative Programming Languages

The term is used in opposition to declarative programming, which expresses what the

program should accomplish without prescribing how to do it in terms of sequence.

5 / 96

Imperative

BASIC:

10 PRINT "Hello";
20 GOTO 10

C:

while (1)
printf("Hello\n");

Perl:

print("Hello\n") while (1);

6 / 96

Declarative

SQL:

SELECT ’Hello’
UNION ALL
SELECT ’Hello’
UNION ALL
SELECT ’Hello’
UNION ALL
SELECT ’Hello’

…

An infinite loop is not easily implemented in simple SQL.

7 / 96

Imperative Database Options

• Client application code (e.g., libpq, JDBC, DBD::Pg)

• Server-side programming (e.g., PL/pgSQL, PL/Perl, C)

• Common table expressions

8 / 96

2. Syntax

https://www.flickr.com/photos/kylewhitney/

9 / 96

Common Table Expression (CTE) Syntax

WITH [RECURSIVE] with_query_name [(column_name [, ...])] AS
(select) [, ...]

SELECT ...

10 / 96

Keep Your Eye on the Red (Text)

https://www.flickr.com/photos/alltheaces/

11 / 96

A Simple CTE

WITH source AS (
SELECT 1

)
SELECT * FROM source;
?column?

1

The CTE created a source table that was referenced by the outer SELECT.

All queries in this presentation can be downloaded from https://momjian.us/main/writings/
pgsql/cte.sql.

12 / 96

https://momjian.us/main/writings/pgsql/cte.sql
https://momjian.us/main/writings/pgsql/cte.sql

Let’s Name the Returned CTE Column

WITH source AS (
SELECT 1 AS col1

)
SELECT * FROM source;
col1

1

The CTE returned column is source.col1.

13 / 96

The Column Can Also Be Named in the WITH Clause

WITH source (col1) AS (
SELECT 1

)
SELECT * FROM source;
col1

1

14 / 96

Columns Can Be Renamed

WITH source (col2) AS (
SELECT 1 AS col1

)
SELECT col2 AS col3 FROM source;
col3

1

The CTE column starts as col1, is renamed in the WITH clause as col2, and the outer SELECT

renames it to col3.

15 / 96

Multiple CTE Columns Can Be Returned

WITH source AS (
SELECT 1, 2

)
SELECT * FROM source;
?column? | ?column?
----------+----------

1 | 2

16 / 96

UNION Refresher

SELECT 1
UNION
SELECT 1;
?column?

1

SELECT 1
UNION ALL
SELECT 1;
?column?

1
1

17 / 96

Possible To Create Multiple CTE Results

WITH source AS (
SELECT 1, 2

),
source2 AS (

SELECT 3, 4
)
SELECT * FROM source
UNION ALL
SELECT * FROM source2;
?column? | ?column?
----------+----------

1 | 2
3 | 4

18 / 96

CTE with Real Tables

WITH source AS (
SELECT lanname, rolname
FROM pg_language JOIN pg_roles ON lanowner = pg_roles.oid

)
SELECT * FROM source;
lanname | rolname
----------+----------
internal | postgres
c | postgres
sql | postgres
plpgsql | postgres

19 / 96

CTE Can Be Processed More than Once

WITH source AS (
SELECT lanname, rolname
FROM pg_language JOIN pg_roles ON lanowner = pg_roles.oid
ORDER BY lanname

)
SELECT * FROM source
UNION ALL
SELECT MIN(lanname), NULL
FROM source;
lanname | rolname
----------+----------
c | postgres
internal | postgres
plpgsql | postgres
sql | postgres
c |

20 / 96

CTE Can Be Joined

WITH class AS (
SELECT oid, relname
FROM pg_class
WHERE relkind = ’r’

)
SELECT class.relname, attname
FROM pg_attribute, class
WHERE class.oid = attrelid
ORDER BY 1, 2
LIMIT 5;

relname | attname
--------------+--------------
pg_aggregate | aggfinalfn
pg_aggregate | aggfnoid
pg_aggregate | agginitval
pg_aggregate | aggsortop
pg_aggregate | aggtransfn

21 / 96

Imperative Control With CASE

CASE
WHEN condition THEN result
ELSE result
END

For example:

SELECT col,
CASE

WHEN col > 0 THEN ’positive’
WHEN col = 0 THEN ’zero’
ELSE ’negative’

END
FROM tab;

22 / 96

3. Recursive CTEs

https://www.flickr.com/photos/rbh/

23 / 96

Looping

WITH RECURSIVE source AS (
SELECT 1

)
SELECT * FROM source;
?column?

1

This does not loop because source is not mentioned in the CTE.

24 / 96

This Is an Infinite Loop

SET statement_timeout = ’1s’;

WITH RECURSIVE source AS (
SELECT 1
UNION ALL
SELECT 1 FROM source

)
SELECT * FROM source;
ERROR: canceling statement due to statement timeout

25 / 96

Flow Of Rows

WITH RECURSIVE source AS (

SELECT * FROM source;

 SELECT 1

)
 SELECT 1 FROM source

 UNION ALL 33
2

1

26 / 96

The ’Hello’ Example in SQL

WITH RECURSIVE source AS (
SELECT ’Hello’
UNION ALL
SELECT ’Hello’ FROM source

)
SELECT * FROM source;
ERROR: canceling statement due to statement timeout

RESET statement_timeout;

27 / 96

UNION without ALL Avoids Recursion

WITH RECURSIVE source AS (
SELECT ’Hello’
UNION
SELECT ’Hello’ FROM source

)
SELECT * FROM source;

?column?

Hello

28 / 96

CTEs Are Useful When Loops Are Constrained

WITH RECURSIVE source (counter) AS (
-- seed value

SELECT 1
UNION ALL
SELECT counter + 1
FROM source
-- terminal condition

WHERE counter < 10
)
SELECT * FROM source;

29 / 96

Output

counter

1
2
3
4
5
6
7
8
9

10

Of course, this can be more easily accomplished using generate_series(1, 10).

30 / 96

Perl Example

for (my $i = 1; $i <= 10; $i++)
{

print "$i\n";
}

31 / 96

Perl Using Recursion

sub f
{

my $arg = shift;
print "$arg\n";
f($arg + 1) if ($arg < 10);

}
f(1);

32 / 96

Perl Recursion Using an Array

my @table;
sub f
{

my $arg = shift // 1;
push @table, $arg;
f($arg + 1) if ($arg < 10);

}
f();
map {print "$_\n"} @table;

This is the most accurate representation of CTEs because it accumultes results in an array (similar
to a table result).

33 / 96

4. Examples

https://www.flickr.com/photos/82134796@N03/

34 / 96

Ten Factorial Using CTE

WITH RECURSIVE source (counter, product) AS (
SELECT 1, 1
UNION ALL
SELECT counter + 1, product * (counter + 1)
FROM source
WHERE counter < 10

)
SELECT counter, product FROM source;

35 / 96

Output

counter | product
---------+---------

1 | 1
2 | 2
3 | 6
4 | 24
5 | 120
6 | 720
7 | 5040
8 | 40320
9 | 362880

10 | 3628800

36 / 96

Only Display the Desired Row

WITH RECURSIVE source (counter, product) AS (
SELECT 1, 1
UNION ALL
SELECT counter + 1, product * (counter + 1)
FROM source
WHERE counter < 10

)
SELECT counter, product
FROM source
WHERE counter = 10;
counter | product
---------+---------

10 | 3628800

37 / 96

Ten Factorial in Perl

my @table;
sub f
{

my ($counter, $product) = @_;
my ($counter_new, $product_new);
if (!defined($counter)) {

$counter_new = 1;
$product_new = 1;

} else {
$counter_new = $counter + 1;
$product_new = $product * ($counter + 1);

}
push(@table, [$counter_new, $product_new]);
f($counter_new, $product_new) if ($counter < 10);

}
f();
map {print "@$_\n" if ($_->[0]) == 10} @table;

38 / 96

String Manipulation Is Also Possible

WITH RECURSIVE source (str) AS (
SELECT ’a’
UNION ALL
SELECT str || ’a’
FROM source
WHERE length(str) < 10

)
SELECT * FROM source;

39 / 96

Output

str

a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa

40 / 96

Characters Can Be Computed

WITH RECURSIVE source (str) AS (
SELECT ’a’
UNION ALL
SELECT str || chr(ascii(right(str, 1)) + 1)
FROM source
WHERE length(str) < 10

)
SELECT * FROM source;

41 / 96

Output

str

a
ab
abc
abcd
abcde
abcdef
abcdefg
abcdefgh
abcdefghi
abcdefghij

42 / 96

ASCII Art Is Even Possible

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, 5 - abs(counter) / 2) ||

’X’ ||
repeat(’ ’, abs(counter)) ||
’X’

FROM source;

43 / 96

Output

?column?

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
XX
X X
X X
X X
X X
X X
X X
X X

X X
X X
X X

44 / 96

How Is that Done?

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT counter,

repeat(’ ’, 5 - abs(counter) / 2) ||
’X’ ||
repeat(’ ’, abs(counter)) ||
’X’

FROM source;

This generates Integers from -10 to 10, and these numbers are used to print an appropriate
number of spaces.

45 / 96

Output

counter | ?column?
---------+--------------

-10 | X X
-9 | X X
-8 | X X
-7 | X X
-6 | X X
-5 | X X
-4 | X X
-3 | X X
-2 | X X
-1 | X X
0 | XX
1 | X X
2 | X X
3 | X X
4 | X X
5 | X X
6 | X X
7 | X X
8 | X X
9 | X X
10 | X X

46 / 96

ASCII Diamonds Are Even Possible

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, abs(counter)/2) ||

’X’ ||
repeat(’ ’, 10 - abs(counter)) ||
’X’

FROM source;

47 / 96

A Diamond

?column?

XX
X X
X X
X X
X X
X X
X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
XX

48 / 96

More Rounded

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, int4(pow(counter, 2)/10)) ||

’X’ ||
repeat(’ ’, 2 * (10 - int4(pow(counter, 2)/10))) ||
’X’

FROM source;

49 / 96

An Oval

?column?

XX
X X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X
XX

50 / 96

A Real Circle

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, int4(pow(counter, 2)/5)) ||

’X’ ||
repeat(’ ’, 2 * (20 - int4(pow(counter, 2)/5))) ||

’X’
FROM source;

51 / 96

Output

?column?
--

XX
X X

X X
X X

X X
X X

X X
X X

X X
X X
X X
X X
X X
X X
X X
X X

X X
X X

X X
X X

XX
52 / 96

Prime Factors

The prime factors of X are the prime numbers that must be multiplied to equal a X, e.g.:

10 = 2 * 5

27 = 3 * 3 * 3

48 = 2 * 2 * 2 * 2 * 3

66 = 2 * 3 * 11

70 = 2 * 5 * 7

100 = 2 * 2 * 5 * 5

53 / 96

Prime Factorization in SQL

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 56, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;

54 / 96

Output

counter | factor | is_factor
---------+--------+-----------

2 | 56 | f
2 | 28 | t
2 | 14 | t
2 | 7 | t
3 | 7 | f
4 | 7 | f
5 | 7 | f
6 | 7 | f
7 | 7 | f
7 | 1 | t

55 / 96

Only Return Prime Factors

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 56, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;

56 / 96

Output

counter | factor | is_factor
---------+--------+-----------

2 | 28 | t
2 | 14 | t
2 | 7 | t
7 | 1 | t

57 / 96

Factors of 322434

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 322434, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;

58 / 96

Output

counter | factor | is_factor
---------+--------+-----------

2 | 161217 | t
3 | 53739 | t
3 | 17913 | t
3 | 5971 | t
7 | 853 | t

853 | 1 | t

59 / 96

Prime Factors of 66

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;

60 / 96

Inefficient

counter | factor | is_factor
---------+--------+-----------

2 | 66 | f
2 | 33 | t
3 | 33 | f
3 | 11 | t
4 | 11 | f
5 | 11 | f
6 | 11 | f
7 | 11 | f
8 | 11 | f
9 | 11 | f
10 | 11 | f
11 | 11 | f
11 | 1 | t

61 / 96

Skip Evens >2, Exit Early with a Final Prime

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
-- is ’factor’ prime?

WHEN counter * counter > factor THEN factor
-- now only odd numbers

WHEN counter = 2 THEN 3
ELSE counter + 2

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;

62 / 96

Output

counter | factor | is_factor
---------+--------+-----------

2 | 66 | f
2 | 33 | t
3 | 33 | f
3 | 11 | t
5 | 11 | f
11 | 11 | f
11 | 1 | t

63 / 96

Return Only Prime Factors

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2,66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
-- is ’factor’ prime?

WHEN counter * counter > factor THEN factor
-- now only odd numbers

WHEN counter = 2 THEN 3
ELSE counter + 2
END,

CASE
WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;

64 / 96

Output

counter | factor | is_factor
---------+--------+-----------

2 | 33 | t
3 | 11 | t
11 | 1 | t

65 / 96

Optimized Prime Factors of 66 in Perl

my @table;
sub f
{

my ($counter, $factor, $is_factor) = @_;
my ($counter_new, $factor_new, $is_factor_new);
if (!defined($counter)) {

$counter_new = 2;
$factor_new = 66;
$is_factor_new = 0;

} else {
$counter_new = ($factor % $counter == 0) ?

$counter :
($counter * $counter > $factor) ?

$factor :
($counter == 2) ?

3 :
$counter + 2;

$factor_new = ($factor % $counter == 0) ?
$factor / $counter :
$factor;

$is_factor_new = ($factor % $counter == 0);
}
push(@table, [$counter_new, $factor_new, $is_factor_new]);
f($counter_new, $factor_new) if ($factor != 1);

}
f();
map {print "$_->[0] $_->[1] $_->[2]\n" if ($_->[2]) == 1} @table;

66 / 96

Recursive Table Processing: Setup

CREATE TEMPORARY TABLE part (parent_part_no INTEGER, part_no INTEGER);

INSERT INTO part VALUES (1, 11);
INSERT INTO part VALUES (1, 12);
INSERT INTO part VALUES (1, 13);
INSERT INTO part VALUES (2, 21);
INSERT INTO part VALUES (2, 22);
INSERT INTO part VALUES (2, 23);
INSERT INTO part VALUES (11, 101);
INSERT INTO part VALUES (13, 102);
INSERT INTO part VALUES (13, 103);
INSERT INTO part VALUES (22, 221);
INSERT INTO part VALUES (22, 222);
INSERT INTO part VALUES (23, 231);

67 / 96

Use CTEs To Walk Through Parts Heirarchy

WITH RECURSIVE source (part_no) AS (
SELECT 2
UNION ALL
SELECT part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT * FROM source;
part_no

2
21
22
23
221
222
231

Using UNION without ALL here would avoid infinite recursion if there is a loop in the

data, but it would also cause a part with multiple parents to appear only once.

68 / 96

Add Dashes

WITH RECURSIVE source (level, part_no) AS (
SELECT 0, 2
UNION ALL
SELECT level + 1, part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree
FROM source;
part_tree

+2
+--21
+--22
+--23
+----221
+----222
+----231

69 / 96

The Parts in ASCII Order

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’2’, 2
UNION ALL
SELECT level + 1, tree || ’ ’ || part.part_no::text, part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree, tree
FROM source
ORDER BY tree;
part_tree | tree
-----------+----------
+2 | 2
+--21 | 2 21
+--22 | 2 22
+----221 | 2 22 221
+----222 | 2 22 222
+--23 | 2 23
+----231 | 2 23 231

70 / 96

The Parts in Numeric Order

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’{2}’::int[], 2
UNION ALL
SELECT level + 1, array_append(tree, part.part_no), part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree, tree
FROM source
ORDER BY tree;
part_tree | tree
-----------+------------
+2 | {2}
+--21 | {2,21}
+--22 | {2,22}
+----221 | {2,22,221}
+----222 | {2,22,222}
+--23 | {2,23}
+----231 | {2,23,231}

71 / 96

Full Output

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’{2}’::int[], 2
UNION ALL
SELECT level + 1, array_append(tree, part.part_no), part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT *, ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree
FROM source
ORDER BY tree;
level | tree | part_no | part_tree
-------+------------+---------+-----------

0 | {2} | 2 | +2
1 | {2,21} | 21 | +--21
1 | {2,22} | 22 | +--22
2 | {2,22,221} | 221 | +----221
2 | {2,22,222} | 222 | +----222
1 | {2,23} | 23 | +--23
2 | {2,23,231} | 231 | +----231

72 / 96

CTE for SQL Object Dependency

CREATE TEMPORARY TABLE deptest (x1 INTEGER);

73 / 96

CTE for SQL Object Dependency

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;

74 / 96

Output

class | type | class | kind | attrdef | constraint
----------+----------+---------+------+---------+------------
pg_class | | deptest | r | |
pg_type | _deptest | | | |
pg_type | deptest | | | |

75 / 96

Do Not Show deptest

WITH RECURSIVE dep (classid, obj) AS (
SELECT classid, objid
FROM pg_depend JOIN pg_class ON (refobjid = pg_class.oid)
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;

76 / 96

Output

class | type | class | kind | attrdef | constraint
---------+----------+-------+------+---------+------------
pg_type | _deptest | | | |
pg_type | deptest | | | |

77 / 96

Add a Primary Key

ALTER TABLE deptest ADD PRIMARY KEY (x1);
NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index

"deptest_pkey" for table "deptest"

78 / 96

Output With Primary Key

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;

79 / 96

Output

class | type | class | kind | attrdef | constraint
---------------+----------+--------------+------+---------+--------------
pg_class | | deptest | r | |
pg_type | _deptest | | | |
pg_type | deptest | | | |
pg_class | | deptest_pkey | i | |
pg_constraint | | | | | deptest_pkey

80 / 96

Add a SERIAL Column

ALTER TABLE deptest ADD COLUMN x2 SERIAL;
NOTICE: ALTER TABLE will create implicit sequence "deptest_x2_seq" for serial column "deptest.x2"

81 / 96

Output with SERIAL Column

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef
-- column removed to reduce output width

FROM dep
ORDER BY obj;

82 / 96

Output

class | type | class | kind | attrdef
---------------+----------------+----------------+------+-------------------------------------
pg_class | | deptest | r |
pg_type | _deptest | | |
pg_type | deptest | | |
pg_class | | deptest_pkey | i |
pg_constraint | | | |
pg_class | | deptest_x2_seq | S |
pg_type | deptest_x2_seq | | |
pg_attrdef | | | | nextval(’deptest_x2_seq’::regclass)
pg_attrdef | | | | nextval(’deptest_x2_seq’::regclass)

83 / 96

Show Full Output

WITH RECURSIVE dep (level, tree, classid, obj) AS (
SELECT 0, array_append(null, oid)::oid[],

(SELECT oid FROM pg_class WHERE relname = ’pg_class’),
oid

FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT level + 1, array_append(tree, objid),

pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT tree,

(SELECT relname FROM pg_class WHERE oid = classid) AS class,
(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef
-- column removed to reduce output width

FROM dep
ORDER BY tree, obj;

84 / 96

Output

tree | class | type | class | kind
---------------------+---------------+----------------+----------------+------
{16458} | pg_class | | deptest | r
{16458,16460} | pg_type | deptest | |
{16458,16460,16459} | pg_type | _deptest | |
{16458,16462} | pg_constraint | | |
{16458,16462,16461} | pg_class | | deptest_pkey | i
{16458,16463} | pg_class | | deptest_x2_seq | S
{16458,16463,16464} | pg_type | deptest_x2_seq | |
{16458,16463,16465} | pg_attrdef | | |
{16458,16465} | pg_attrdef | | |

85 / 96

5. Writable CTEs

https://www.flickr.com/photos/dmelchordiaz//

86 / 96

Writable CTEs

• Allow data-modification commands (INSERT/UPDATE/DELETE) in WITH clauses
• These commands can use RETURNING to pass data up to the containing query.

• Allow WITH clauses to be attached to INSERT, UPDATE, DELETE statements

87 / 96

Use INSERT, UPDATE, DELETE in WITH Clauses

CREATE TEMPORARY TABLE retdemo (x NUMERIC);

INSERT INTO retdemo VALUES (random()), (random()), (random()) RETURNING x;
x

0.00761545216664672
0.85416117589920831
0.10137318633496895

WITH source AS (
INSERT INTO retdemo
VALUES (random()), (random()), (random()) RETURNING x

)
SELECT AVG(x) FROM source;

avg

0.46403147140517833

88 / 96

Use INSERT, UPDATE, DELETE in WITH Clauses

WITH source AS (
DELETE FROM retdemo RETURNING x

)
SELECT MAX(x) FROM source;

max

0.93468171451240821

89 / 96

Supply Rows to INSERT, UPDATE, DELETE Using WITH Clauses

CREATE TEMPORARY TABLE retdemo2 (x NUMERIC);

INSERT INTO retdemo2 VALUES (random()), (random()), (random());

WITH source (average) AS (
SELECT AVG(x) FROM retdemo2

)
DELETE FROM retdemo2 USING source
WHERE retdemo2.x < source.average;

SELECT * FROM retdemo2;
x

0.777186767663807

90 / 96

Recursive WITH to Delete Parts

WITH RECURSIVE source (part_no) AS (
SELECT 2
UNION ALL
SELECT part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
DELETE FROM part
USING source
WHERE source.part_no = part.part_no;

91 / 96

Using Both Features

CREATE TEMPORARY TABLE retdemo3 (x NUMERIC);

INSERT INTO retdemo3 VALUES (random()), (random()), (random());

WITH source (average) AS (
SELECT AVG(x) FROM retdemo3

),
source2 AS (

DELETE FROM retdemo3 USING source
WHERE retdemo3.x < source.average
RETURNING x

)
SELECT * FROM source2;

x

0.185174203012139
0.209731927141547

92 / 96

Chaining Modification Commands

CREATE TEMPORARY TABLE orders (order_id SERIAL, name text);

CREATE TEMPORARY TABLE items (order_id INTEGER, part_id SERIAL, name text);

WITH source (order_id) AS (
INSERT INTO orders VALUES (DEFAULT, ’my order’) RETURNING order_id

)
INSERT INTO items (order_id, name) SELECT order_id, ’my part’ FROM source;

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

)
DELETE FROM items USING source WHERE source.order_id = items.order_id;

93 / 96

Mixing Modification Commands

CREATE TEMPORARY TABLE old_orders (order_id INTEGER, delete_user TEXT, delete_time TIMESTAMPTZ);

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

), source2 AS (
DELETE FROM items USING source WHERE source.order_id = items.order_id

)
INSERT INTO old_orders SELECT order_id, CURRENT_USER, CURRENT_TIMESTAMP FROM source;

94 / 96

6. Why Use CTEs

• Allows imperative processing in SQL

• Merges multiple SQL queries and their connecting application logic into a single, unified SQL

query

• Improves performance by issuing fewer queries

• reduces transmission overhead, unless server-side functions are being used
• reduces parsing/optimizing overhead, unless prepared statements are being used

• Uses the same row visibility snapshot for the entire query, rather than requiring repeatable
read isolation mode

• Possible optimization barrier after each CTE

• necessary for recursion and writable CTEs
• can hurt performance when a join query is changed to use CTEs
• pre-Postgres 12, CTEs are always an optimization barrier
• Postgres 12 and later, a barrier only when useful

• can be forced by keyword MATERIALIZED
• see https://www.postgresql.eu/events/pgconfeu2022/sessions/session/3902/

slides/354/CTEsAndTheirMaterialization-DivyaSharma.pdf

95 / 96

https://www.postgresql.eu/events/pgconfeu2022/sessions/session/3902/slides/354/CTEsAndTheirMaterialization-DivyaSharma.pdf
https://www.postgresql.eu/events/pgconfeu2022/sessions/session/3902/slides/354/CTEsAndTheirMaterialization-DivyaSharma.pdf

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/theophilusphotography/

96 / 96

