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BRUCE MOMJIAN

Common Table Expressions (CTEs) allow queries to be more imperative, allowing

looping and processing hierarchical structures that are normally associated only with

imperative languages.
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1. Imperative vs. Declarative

https://www.flickr.com/photos/visit_cape_may/
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Imperative Programming Languages

In computer science, imperative programming is a programming paradigm that describes

computation in terms of statements that change a program state. In much the same way

that imperative mood in natural languages expresses commands to take action,

imperative programs define sequences of commands for the computer to perform.

http://en.wikipedia.org/wiki/Imperative_programming
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Declarative Programming Languages

The term is used in opposition to declarative programming, which expresses what the

program should accomplish without prescribing how to do it in terms of sequence.
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Imperative

BASIC:

10 PRINT "Hello";
20 GOTO 10

C:

while (1)
printf("Hello\n");

Perl:

print("Hello\n") while (1);
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Declarative

SQL:

SELECT ’Hello’
UNION ALL
SELECT ’Hello’
UNION ALL
SELECT ’Hello’
UNION ALL
SELECT ’Hello’

…

An infinite loop is not easily implemented in simple SQL.
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Imperative Database Options

• Client application code (e.g., libpq, JDBC, DBD::Pg)

• Server-side programming (e.g., PL/pgSQL, PL/Perl, C)

• Common table expressions
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2. Syntax

https://www.flickr.com/photos/kylewhitney/
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Common Table Expression (CTE) Syntax

WITH [ RECURSIVE ] with_query_name [ ( column_name [, ...] ) ] AS
( select ) [ , ... ]

SELECT ...
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Keep Your Eye on the Red (Text)

https://www.flickr.com/photos/alltheaces/
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A Simple CTE

WITH source AS (
SELECT 1

)
SELECT * FROM source;
?column?
----------

1

The CTE created a source table that was referenced by the outer SELECT.

All queries in this presentation can be downloaded from https://momjian.us/main/writings/
pgsql/cte.sql.
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Let’s Name the Returned CTE Column

WITH source AS (
SELECT 1 AS col1

)
SELECT * FROM source;
col1
------

1

The CTE returned column is source.col1.
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The Column Can Also Be Named in the WITH Clause

WITH source (col1) AS (
SELECT 1

)
SELECT * FROM source;
col1
------

1
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Columns Can Be Renamed

WITH source (col2) AS (
SELECT 1 AS col1

)
SELECT col2 AS col3 FROM source;
col3
------

1

The CTE column starts as col1, is renamed in the WITH clause as col2, and the outer SELECT

renames it to col3.
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Multiple CTE Columns Can Be Returned

WITH source AS (
SELECT 1, 2

)
SELECT * FROM source;
?column? | ?column?
----------+----------

1 | 2
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UNION Refresher

SELECT 1
UNION
SELECT 1;
?column?
----------

1

SELECT 1
UNION ALL
SELECT 1;
?column?
----------

1
1
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Possible To Create Multiple CTE Results

WITH source AS (
SELECT 1, 2

),
source2 AS (

SELECT 3, 4
)
SELECT * FROM source
UNION ALL
SELECT * FROM source2;
?column? | ?column?
----------+----------

1 | 2
3 | 4
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CTE with Real Tables

WITH source AS (
SELECT lanname, rolname
FROM pg_language JOIN pg_roles ON lanowner = pg_roles.oid

)
SELECT * FROM source;
lanname | rolname
----------+----------
internal | postgres
c | postgres
sql | postgres
plpgsql | postgres
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CTE Can Be Processed More than Once

WITH source AS (
SELECT lanname, rolname
FROM pg_language JOIN pg_roles ON lanowner = pg_roles.oid
ORDER BY lanname

)
SELECT * FROM source
UNION ALL
SELECT MIN(lanname), NULL
FROM source;
lanname | rolname
----------+----------
c | postgres
internal | postgres
plpgsql | postgres
sql | postgres
c |
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CTE Can Be Joined

WITH class AS (
SELECT oid, relname
FROM pg_class
WHERE relkind = ’r’

)
SELECT class.relname, attname
FROM pg_attribute, class
WHERE class.oid = attrelid
ORDER BY 1, 2
LIMIT 5;

relname | attname
--------------+--------------
pg_aggregate | aggfinalfn
pg_aggregate | aggfnoid
pg_aggregate | agginitval
pg_aggregate | aggsortop
pg_aggregate | aggtransfn
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Imperative Control With CASE

CASE
WHEN condition THEN result
ELSE result
END

For example:

SELECT col,
CASE

WHEN col > 0 THEN ’positive’
WHEN col = 0 THEN ’zero’
ELSE ’negative’

END
FROM tab;
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3. Recursive CTEs

https://www.flickr.com/photos/rbh/
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Looping

WITH RECURSIVE source AS (
SELECT 1

)
SELECT * FROM source;
?column?
----------

1

This does not loop because source is not mentioned in the CTE.
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This Is an Infinite Loop

SET statement_timeout = ’1s’;

WITH RECURSIVE source AS (
SELECT 1
UNION ALL
SELECT 1 FROM source

)
SELECT * FROM source;
ERROR: canceling statement due to statement timeout
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Flow Of Rows

WITH RECURSIVE source AS (

SELECT * FROM source;

        SELECT 1

)
        SELECT 1 FROM source

        UNION ALL 33
2

1
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The ’Hello’ Example in SQL

WITH RECURSIVE source AS (
SELECT ’Hello’
UNION ALL
SELECT ’Hello’ FROM source

)
SELECT * FROM source;
ERROR: canceling statement due to statement timeout

RESET statement_timeout;
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UNION without ALL Avoids Recursion

WITH RECURSIVE source AS (
SELECT ’Hello’
UNION
SELECT ’Hello’ FROM source

)
SELECT * FROM source;

?column?
----------
Hello
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CTEs Are Useful When Loops Are Constrained

WITH RECURSIVE source (counter) AS (
-- seed value

SELECT 1
UNION ALL
SELECT counter + 1
FROM source
-- terminal condition

WHERE counter < 10
)
SELECT * FROM source;
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Output

counter
---------

1
2
3
4
5
6
7
8
9

10

Of course, this can be more easily accomplished using generate_series(1, 10).
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Perl Example

for (my $i = 1; $i <= 10; $i++)
{

print "$i\n";
}
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Perl Using Recursion

sub f
{

my $arg = shift;
print "$arg\n";
f($arg + 1) if ($arg < 10);

}
f(1);
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Perl Recursion Using an Array

my @table;
sub f
{

my $arg = shift // 1;
push @table, $arg;
f($arg + 1) if ($arg < 10);

}
f();
map {print "$_\n"} @table;

This is the most accurate representation of CTEs because it accumultes results in an array (similar
to a table result).
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4. Examples

https://www.flickr.com/photos/82134796@N03/
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Ten Factorial Using CTE

WITH RECURSIVE source (counter, product) AS (
SELECT 1, 1
UNION ALL
SELECT counter + 1, product * (counter + 1)
FROM source
WHERE counter < 10

)
SELECT counter, product FROM source;
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Output

counter | product
---------+---------

1 | 1
2 | 2
3 | 6
4 | 24
5 | 120
6 | 720
7 | 5040
8 | 40320
9 | 362880

10 | 3628800
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Only Display the Desired Row

WITH RECURSIVE source (counter, product) AS (
SELECT 1, 1
UNION ALL
SELECT counter + 1, product * (counter + 1)
FROM source
WHERE counter < 10

)
SELECT counter, product
FROM source
WHERE counter = 10;
counter | product
---------+---------

10 | 3628800
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Ten Factorial in Perl

my @table;
sub f
{

my ($counter, $product) = @_;
my ($counter_new, $product_new);
if (!defined($counter)) {

$counter_new = 1;
$product_new = 1;

} else {
$counter_new = $counter + 1;
$product_new = $product * ($counter + 1);

}
push(@table, [$counter_new, $product_new]);
f($counter_new, $product_new) if ($counter < 10);

}
f();
map {print "@$_\n" if ($_->[0]) == 10} @table;
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String Manipulation Is Also Possible

WITH RECURSIVE source (str) AS (
SELECT ’a’
UNION ALL
SELECT str || ’a’
FROM source
WHERE length(str) < 10

)
SELECT * FROM source;
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Output

str
------------
a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa
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Characters Can Be Computed

WITH RECURSIVE source (str) AS (
SELECT ’a’
UNION ALL
SELECT str || chr(ascii(right(str, 1)) + 1)
FROM source
WHERE length(str) < 10

)
SELECT * FROM source;
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Output

str
------------
a
ab
abc
abcd
abcde
abcdef
abcdefg
abcdefgh
abcdefghi
abcdefghij
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ASCII Art Is Even Possible

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, 5 - abs(counter) / 2) ||

’X’ ||
repeat(’ ’, abs(counter)) ||
’X’

FROM source;
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Output

?column?
--------------
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
XX
X X
X X
X X
X X
X X
X X
X X

X X
X X
X X
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How Is that Done?

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT counter,

repeat(’ ’, 5 - abs(counter) / 2) ||
’X’ ||
repeat(’ ’, abs(counter)) ||
’X’

FROM source;

This generates Integers from -10 to 10, and these numbers are used to print an appropriate
number of spaces.
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Output

counter | ?column?
---------+--------------

-10 | X X
-9 | X X
-8 | X X
-7 | X X
-6 | X X
-5 | X X
-4 | X X
-3 | X X
-2 | X X
-1 | X X
0 | XX
1 | X X
2 | X X
3 | X X
4 | X X
5 | X X
6 | X X
7 | X X
8 | X X
9 | X X
10 | X X
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ASCII Diamonds Are Even Possible

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, abs(counter)/2) ||

’X’ ||
repeat(’ ’, 10 - abs(counter)) ||
’X’

FROM source;
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A Diamond

?column?
--------------

XX
X X
X X
X X
X X
X X
X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
XX
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More Rounded

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, int4(pow(counter, 2)/10)) ||

’X’ ||
repeat(’ ’, 2 * (10 - int4(pow(counter, 2)/10))) ||
’X’

FROM source;
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An Oval

?column?
------------------------

XX
X X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X
XX
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A Real Circle

WITH RECURSIVE source (counter) AS (
SELECT -10
UNION ALL
SELECT counter + 1
FROM source
WHERE counter < 10

)
SELECT repeat(’ ’, int4(pow(counter, 2)/5)) ||

’X’ ||
repeat(’ ’, 2 * (20 - int4(pow(counter, 2)/5))) ||

’X’
FROM source;
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Output

?column?
--------------------------------------------

XX
X X

X X
X X

X X
X X

X X
X X

X X
X X
X X
X X
X X
X X
X X
X X

X X
X X

X X
X X

XX
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Prime Factors

The prime factors of X are the prime numbers that must be multiplied to equal a X, e.g.:

10 = 2 * 5

27 = 3 * 3 * 3

48 = 2 * 2 * 2 * 2 * 3

66 = 2 * 3 * 11

70 = 2 * 5 * 7

100 = 2 * 2 * 5 * 5
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Prime Factorization in SQL

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 56, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;

54 / 96



Output

counter | factor | is_factor
---------+--------+-----------

2 | 56 | f
2 | 28 | t
2 | 14 | t
2 | 7 | t
3 | 7 | f
4 | 7 | f
5 | 7 | f
6 | 7 | f
7 | 7 | f
7 | 1 | t
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Only Return Prime Factors

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 56, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;
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Output

counter | factor | is_factor
---------+--------+-----------

2 | 28 | t
2 | 14 | t
2 | 7 | t
7 | 1 | t
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Factors of 322434

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 322434, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;
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Output

counter | factor | is_factor
---------+--------+-----------

2 | 161217 | t
3 | 53739 | t
3 | 17913 | t
3 | 5971 | t
7 | 853 | t

853 | 1 | t
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Prime Factors of 66

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
ELSE counter + 1

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;
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Inefficient

counter | factor | is_factor
---------+--------+-----------

2 | 66 | f
2 | 33 | t
3 | 33 | f
3 | 11 | t
4 | 11 | f
5 | 11 | f
6 | 11 | f
7 | 11 | f
8 | 11 | f
9 | 11 | f
10 | 11 | f
11 | 11 | f
11 | 1 | t
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Skip Evens >2, Exit Early with a Final Prime

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2, 66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
-- is ’factor’ prime?

WHEN counter * counter > factor THEN factor
-- now only odd numbers

WHEN counter = 2 THEN 3
ELSE counter + 2

END,
CASE

WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source;
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Output

counter | factor | is_factor
---------+--------+-----------

2 | 66 | f
2 | 33 | t
3 | 33 | f
3 | 11 | t
5 | 11 | f
11 | 11 | f
11 | 1 | t
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Return Only Prime Factors

WITH RECURSIVE source (counter, factor, is_factor) AS (
SELECT 2,66, false
UNION ALL
SELECT CASE

WHEN factor % counter = 0 THEN counter
-- is ’factor’ prime?

WHEN counter * counter > factor THEN factor
-- now only odd numbers

WHEN counter = 2 THEN 3
ELSE counter + 2
END,

CASE
WHEN factor % counter = 0 THEN factor / counter
ELSE factor

END,
CASE

WHEN factor % counter = 0 THEN true
ELSE false

END
FROM source
WHERE factor <> 1

)
SELECT * FROM source WHERE is_factor;
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Output

counter | factor | is_factor
---------+--------+-----------

2 | 33 | t
3 | 11 | t
11 | 1 | t
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Optimized Prime Factors of 66 in Perl

my @table;
sub f
{

my ($counter, $factor, $is_factor) = @_;
my ($counter_new, $factor_new, $is_factor_new);
if (!defined($counter)) {

$counter_new = 2;
$factor_new = 66;
$is_factor_new = 0;

} else {
$counter_new = ($factor % $counter == 0) ?

$counter :
($counter * $counter > $factor) ?

$factor :
($counter == 2) ?

3 :
$counter + 2;

$factor_new = ($factor % $counter == 0) ?
$factor / $counter :
$factor;

$is_factor_new = ($factor % $counter == 0);
}
push(@table, [$counter_new, $factor_new, $is_factor_new]);
f($counter_new, $factor_new) if ($factor != 1);

}
f();
map {print "$_->[0] $_->[1] $_->[2]\n" if ($_->[2]) == 1} @table;
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Recursive Table Processing: Setup

CREATE TEMPORARY TABLE part (parent_part_no INTEGER, part_no INTEGER);

INSERT INTO part VALUES (1, 11);
INSERT INTO part VALUES (1, 12);
INSERT INTO part VALUES (1, 13);
INSERT INTO part VALUES (2, 21);
INSERT INTO part VALUES (2, 22);
INSERT INTO part VALUES (2, 23);
INSERT INTO part VALUES (11, 101);
INSERT INTO part VALUES (13, 102);
INSERT INTO part VALUES (13, 103);
INSERT INTO part VALUES (22, 221);
INSERT INTO part VALUES (22, 222);
INSERT INTO part VALUES (23, 231);

67 / 96



Use CTEs To Walk Through Parts Heirarchy

WITH RECURSIVE source (part_no) AS (
SELECT 2
UNION ALL
SELECT part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT * FROM source;
part_no
---------

2
21
22
23
221
222
231

Using UNION without ALL here would avoid infinite recursion if there is a loop in the

data, but it would also cause a part with multiple parents to appear only once.
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Add Dashes

WITH RECURSIVE source (level, part_no) AS (
SELECT 0, 2
UNION ALL
SELECT level + 1, part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree
FROM source;
part_tree
-----------
+2
+--21
+--22
+--23
+----221
+----222
+----231
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The Parts in ASCII Order

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’2’, 2
UNION ALL
SELECT level + 1, tree || ’ ’ || part.part_no::text, part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree, tree
FROM source
ORDER BY tree;
part_tree | tree
-----------+----------
+2 | 2
+--21 | 2 21
+--22 | 2 22
+----221 | 2 22 221
+----222 | 2 22 222
+--23 | 2 23
+----231 | 2 23 231
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The Parts in Numeric Order

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’{2}’::int[], 2
UNION ALL
SELECT level + 1, array_append(tree, part.part_no), part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree, tree
FROM source
ORDER BY tree;
part_tree | tree
-----------+------------
+2 | {2}
+--21 | {2,21}
+--22 | {2,22}
+----221 | {2,22,221}
+----222 | {2,22,222}
+--23 | {2,23}
+----231 | {2,23,231}
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Full Output

WITH RECURSIVE source (level, tree, part_no) AS (
SELECT 0, ’{2}’::int[], 2
UNION ALL
SELECT level + 1, array_append(tree, part.part_no), part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
SELECT *, ’+’ || repeat(’-’, level * 2) || part_no::text AS part_tree
FROM source
ORDER BY tree;
level | tree | part_no | part_tree
-------+------------+---------+-----------

0 | {2} | 2 | +2
1 | {2,21} | 21 | +--21
1 | {2,22} | 22 | +--22
2 | {2,22,221} | 221 | +----221
2 | {2,22,222} | 222 | +----222
1 | {2,23} | 23 | +--23
2 | {2,23,231} | 231 | +----231
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CTE for SQL Object Dependency

CREATE TEMPORARY TABLE deptest (x1 INTEGER);
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CTE for SQL Object Dependency

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;
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Output

class | type | class | kind | attrdef | constraint
----------+----------+---------+------+---------+------------
pg_class | | deptest | r | |
pg_type | _deptest | | | |
pg_type | deptest | | | |

75 / 96



Do Not Show deptest

WITH RECURSIVE dep (classid, obj) AS (
SELECT classid, objid
FROM pg_depend JOIN pg_class ON (refobjid = pg_class.oid)
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;
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Output

class | type | class | kind | attrdef | constraint
---------+----------+-------+------+---------+------------
pg_type | _deptest | | | |
pg_type | deptest | | | |
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Add a Primary Key

ALTER TABLE deptest ADD PRIMARY KEY (x1);
NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index

"deptest_pkey" for table "deptest"
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Output With Primary Key

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef,
(SELECT conname FROM pg_constraint WHERE oid = obj) AS constraint

FROM dep
ORDER BY obj;
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Output

class | type | class | kind | attrdef | constraint
---------------+----------+--------------+------+---------+--------------
pg_class | | deptest | r | |
pg_type | _deptest | | | |
pg_type | deptest | | | |
pg_class | | deptest_pkey | i | |
pg_constraint | | | | | deptest_pkey
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Add a SERIAL Column

ALTER TABLE deptest ADD COLUMN x2 SERIAL;
NOTICE: ALTER TABLE will create implicit sequence "deptest_x2_seq" for serial column "deptest.x2"
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Output with SERIAL Column

WITH RECURSIVE dep (classid, obj) AS (
SELECT (SELECT oid FROM pg_class WHERE relname = ’pg_class’),

oid
FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT (SELECT relname FROM pg_class WHERE oid = classid) AS class,

(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT relkind FROM pg_class where oid = obj::regclass) AS kind,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef
-- column removed to reduce output width

FROM dep
ORDER BY obj;
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Output

class | type | class | kind | attrdef
---------------+----------------+----------------+------+-------------------------------------
pg_class | | deptest | r |
pg_type | _deptest | | |
pg_type | deptest | | |
pg_class | | deptest_pkey | i |
pg_constraint | | | |
pg_class | | deptest_x2_seq | S |
pg_type | deptest_x2_seq | | |
pg_attrdef | | | | nextval(’deptest_x2_seq’::regclass)
pg_attrdef | | | | nextval(’deptest_x2_seq’::regclass)
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Show Full Output

WITH RECURSIVE dep (level, tree, classid, obj) AS (
SELECT 0, array_append(null, oid)::oid[],

(SELECT oid FROM pg_class WHERE relname = ’pg_class’),
oid

FROM pg_class
WHERE relname = ’deptest’
UNION ALL
SELECT level + 1, array_append(tree, objid),

pg_depend.classid, objid
FROM pg_depend JOIN dep ON (refobjid = dep.obj)

)
SELECT tree,

(SELECT relname FROM pg_class WHERE oid = classid) AS class,
(SELECT typname FROM pg_type WHERE oid = obj) AS type,
(SELECT relname FROM pg_class WHERE oid = obj) AS class,
(SELECT pg_get_expr(adbin, classid) FROM pg_attrdef WHERE oid = obj) AS attrdef
-- column removed to reduce output width

FROM dep
ORDER BY tree, obj;
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Output

tree | class | type | class | kind
---------------------+---------------+----------------+----------------+------
{16458} | pg_class | | deptest | r
{16458,16460} | pg_type | deptest | |
{16458,16460,16459} | pg_type | _deptest | |
{16458,16462} | pg_constraint | | |
{16458,16462,16461} | pg_class | | deptest_pkey | i
{16458,16463} | pg_class | | deptest_x2_seq | S
{16458,16463,16464} | pg_type | deptest_x2_seq | |
{16458,16463,16465} | pg_attrdef | | |
{16458,16465} | pg_attrdef | | |
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5. Writable CTEs

https://www.flickr.com/photos/dmelchordiaz//
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Writable CTEs

• Allow data-modification commands (INSERT/UPDATE/DELETE) in WITH clauses
• These commands can use RETURNING to pass data up to the containing query.

• Allow WITH clauses to be attached to INSERT, UPDATE, DELETE statements
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Use INSERT, UPDATE, DELETE in WITH Clauses

CREATE TEMPORARY TABLE retdemo (x NUMERIC);

INSERT INTO retdemo VALUES (random()), (random()), (random()) RETURNING x;
x

---------------------
0.00761545216664672
0.85416117589920831
0.10137318633496895

WITH source AS (
INSERT INTO retdemo
VALUES (random()), (random()), (random()) RETURNING x

)
SELECT AVG(x) FROM source;

avg
---------------------
0.46403147140517833
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Use INSERT, UPDATE, DELETE in WITH Clauses

WITH source AS (
DELETE FROM retdemo RETURNING x

)
SELECT MAX(x) FROM source;

max
---------------------
0.93468171451240821
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Supply Rows to INSERT, UPDATE, DELETE Using WITH Clauses

CREATE TEMPORARY TABLE retdemo2 (x NUMERIC);

INSERT INTO retdemo2 VALUES (random()), (random()), (random());

WITH source (average) AS (
SELECT AVG(x) FROM retdemo2

)
DELETE FROM retdemo2 USING source
WHERE retdemo2.x < source.average;

SELECT * FROM retdemo2;
x

-------------------
0.777186767663807
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Recursive WITH to Delete Parts

WITH RECURSIVE source (part_no) AS (
SELECT 2
UNION ALL
SELECT part.part_no
FROM source JOIN part ON (source.part_no = part.parent_part_no)

)
DELETE FROM part
USING source
WHERE source.part_no = part.part_no;
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Using Both Features

CREATE TEMPORARY TABLE retdemo3 (x NUMERIC);

INSERT INTO retdemo3 VALUES (random()), (random()), (random());

WITH source (average) AS (
SELECT AVG(x) FROM retdemo3

),
source2 AS (

DELETE FROM retdemo3 USING source
WHERE retdemo3.x < source.average
RETURNING x

)
SELECT * FROM source2;

x
-------------------
0.185174203012139
0.209731927141547
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Chaining Modification Commands

CREATE TEMPORARY TABLE orders (order_id SERIAL, name text);

CREATE TEMPORARY TABLE items (order_id INTEGER, part_id SERIAL, name text);

WITH source (order_id) AS (
INSERT INTO orders VALUES (DEFAULT, ’my order’) RETURNING order_id

)
INSERT INTO items (order_id, name) SELECT order_id, ’my part’ FROM source;

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

)
DELETE FROM items USING source WHERE source.order_id = items.order_id;
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Mixing Modification Commands

CREATE TEMPORARY TABLE old_orders (order_id INTEGER, delete_user TEXT, delete_time TIMESTAMPTZ);

WITH source (order_id) AS (
DELETE FROM orders WHERE name = ’my order’ RETURNING order_id

), source2 AS (
DELETE FROM items USING source WHERE source.order_id = items.order_id

)
INSERT INTO old_orders SELECT order_id, CURRENT_USER, CURRENT_TIMESTAMP FROM source;
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6. Why Use CTEs

• Allows imperative processing in SQL

• Merges multiple SQL queries and their connecting application logic into a single, unified SQL

query

• Improves performance by issuing fewer queries

• reduces transmission overhead, unless server-side functions are being used
• reduces parsing/optimizing overhead, unless prepared statements are being used

• Uses the same row visibility snapshot for the entire query, rather than requiring repeatable
read isolation mode

• Possible optimization barrier after each CTE

• necessary for recursion and writable CTEs
• can hurt performance when a join query is changed to use CTEs
• pre-Postgres 12, CTEs are always an optimization barrier
• Postgres 12 and later, a barrier only when useful

• can be forced by keyword MATERIALIZED
• see https://www.postgresql.eu/events/pgconfeu2022/sessions/session/3902/

slides/354/CTEsAndTheirMaterialization-DivyaSharma.pdf
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Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/theophilusphotography/
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