Mastering PostgreSQL Administration

BRUCE MOMJIAN

POSTGRESQL is an open-source, full-featured relational database. This presentation covers advanced administration topics.

https://momjian.us/presentations

Creative Commons Attribution License

Last updated: July, 2021
Outline

1. Installation
2. Configuration
3. Maintenance
4. Monitoring
5. Recovery
1. Installation

- Click-through Installers
 - MS Windows
 - Linux
 - OS X
- Ports
 - RPM
 - DEB
 - PKG
 - other packages
- Source
 - obtaining
 - build options
 - installing
Initialization (initdb)

$ initdb /u/pgsql/data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "en_US.UTF-8". The default database encoding has accordingly been set to "UTF8". The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /u/pgsql/data ... ok
creating subdirectories ... ok
selecting default max_connections ... 100
selecting default shared_buffers ... 128MB
selecting dynamic shared memory implementation ... posix
creating configuration files ... ok
running bootstrap script ... ok
performing post-bootstrap initialization ... ok
syncing data to disk ... ok

WARNING: enabling "trust" authentication for local connections
You can change this by editing pg_hba.conf or using the option -A, or
--auth-local and --auth-host, the next time you run initdb.

Success. You can now start the database server using:

 pg_ctl -D /u/pgsql/data -l logfile start
$ pg_controldata
pg_control version number: 1002
Catalog version number: 201707211
Database system identifier: 6544633619067825437
Database cluster state: shut down
pg_control last modified: Sun 15 Apr 2018 07:20:58 AM EDT
Latest checkpoint location: 0/15C09E0
Prior checkpoint location: 0/15C0708
Latest checkpoint's REDO location: 0/15C09E0
Latest checkpoint's REDO WAL file: 00000000100000000000000000000001
Latest checkpoint's TimeLineID: 1
Latest checkpoint's PrevTimeLineID: 1
Latest checkpoint's full_page_writes: on
Latest checkpoint's NextXID: 0:555
Latest checkpoint's NextOID: 12296
Latest checkpoint's NextMultiXactId: 1
Latest checkpoint's NextMultiOffset: 0
Latest checkpoint's oldestXID: 548
Latest checkpoint's oldestXID's DB: 1
Latest checkpoint's oldestActiveXID: 0
Latest checkpoint's oldestMultiXid: 1
Latest checkpoint's oldestMulti's DB: 1
Latest checkpoint's oldestCommitTsXid: 0
Latest checkpoint's newestCommitTsXid: 0
Time of latest checkpoint: Sun 15 Apr 2018 07:20:58 AM EDT
Fake LSN counter for unlogged rels: 0/1
Minimum recovery ending location: 0/0
Min recovery ending loc's timeline: 0
Backup start location: 0/0
Backup end location: 0/0
...
System Architecture

Main
Postmaster
Postgres

Utility
Libpq

Generate Plan
Traffic Cop
Rewrite Query
Generate Paths
Optimal Path
Generate Plan
Execute Plan

Utility Command
Utility

Parse Statement
Query

Query
SELECT, INSERT, UPDATE, DELETE

CREATE TABLE, COPY

Storage Managers
Utilities
Catalog

Nodes / Lists
Access Methods
Session Creation
Starting Postmaster

- manually
- `pg_ctl start`
- on boot
Stopping Postmaster

• manually
• pg_ctl stop
• on shutdown
Connections

- local — unix domain socket
- host — TCP/IP, both SSL or non-SSL
- hostssl — only SSL
- hostnossl — never SSL
Authentication

- trust
- reject
- passwords
 - scram-sha-256
 - md5
 - password (cleartext)
- local authentication
 - socket permissions
 - ‘peer’ socket user name passing
 - host ident using local identd
• remote authentication
 • host ident using pg_ident.conf
 • kerberos
 • gss
 • sspi
 • pam
 • ldap
 • radius
 • cert
Access

- hostname and network mask
- database name
- role name (user or group)
- filename or list of databases, role
- IPv6
TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all trust

IPv4 local connections:
host all all 127.0.0.1/32 trust

IPv6 local connections:
host all all ::1/128 trust

Allow replication connections from localhost, by a user with the
replication privilege.
#local replication postgres trust
#host replication postgres 127.0.0.1/32 trust
#host replication postgres ::1/128 trust
"local" is for Unix domain socket connections only
local all all trust
IPv4 local connections:
host all all 127.0.0.1/32 trust
IPv6 local connections:
host all all ::1/128 trust

disable connections from the gateway machine
host all all 192.168.1.254/32 reject
enable local network
host all all 192.168.1.0/24 scram-sha-256
require SSL for external connections, but do not allow the superuser
hostssl all postgres 0.0.0.0/0 reject
hostssl all all 0.0.0.0/0 scram-sha-256
• Host connection permissions
• Role permissions
 • create roles
 • create databases
 • table permissions
• Database management
 • template1 customization
 • system tables
 • disk space computations
$ ls -CF
base/ pg_ident.conf pg_serial/ pg_tblspc/ postgresql.auto.conf
global/ pg_logical/ pg_snapshots/ pg_twophase/ postgresql.conf
pg_commit_ts/ pg_multixact/ pg_stat/ PG_VERSION postmaster.opts
pg_dynshmem/ pg_notify/ pg_stat_tmp/ pg_wal/
pg_hba.conf pg_replslot/ pg_subtrans/ pg_xact/
$ ls -CF global/
1136 1214_fsm 1261_vm 2671 2846 2967 6000_vm
1136_fsm 1214_vm 1262 2672 2846_vm 3592 6001
1136_vm 1232 1262_fsm 2676 2847 3592_vm 6002
1137 1233 1262_vm 2677 2964 3593 pg_control
1213 1260 2396 2694 2964_vm 4060 pg_filenode.map
1213_fsm 1260_fsm 2396_fsm 2695 2965_vm 4060_vm pg_internal.init
1213_vm 1260_vm 2396_vm 2697 2966_vm 4061
1214 1261 2397 2698 2966_vm 6000

$ ls -CF base/
1/ 12406/ 12407/ 16384/

$ ls -CF base/16384

...
Transaction/WAL Directories

$ ls -CF pg_wal/
00000001000000000000000000000001 archive_status/

$ ls -CF pg_xact/
0000
$ ls -CF share/
conversion_create.sql postgres.bki snowball_create.sql
extension/ postgres.description sql_features.txt
information_schema.sql postgresql.conf.sample system_views.sql
pg_hba.conf.sample postgresh.description timezone/
pg_ident.conf.sample psqlrc.sample timezonesets/
pg_service.conf.sample recovery.conf.sample tsearch_data/
2. Configuration

https://www.flickr.com/photos/mwichary/

PostgreSQL configuration file

#
This file consists of lines of the form:
#
name = value
#
(The "=" is optional.) Whitespace may be used. Comments are introduced with
"#" anywhere on a line. The complete list of parameter names and allowed
values can be found in the PostgreSQL documentation.
#
The commented-out settings shown in this file represent the default values.
Re-commenting a setting is NOT sufficient to revert it to the default value;
you need to reload the server.
This file is read on server startup and when the server receives a SIGHUP signal. If you edit the file on a running system, you have to SIGHUP the server for the changes to take effect, run "pg_ctl reload", or execute "SELECT pg_reload_conf()". Some parameters, which are marked below, require a server shutdown and restart to take effect.

Any parameter can also be given as a command-line option to the server, e.g., "postgres -c log_connections=on". Some parameters can be changed at run time with the "SET" SQL command.

Memory units: kB = kilobytes Time units: ms = milliseconds
MB = megabytes s = seconds
GB = gigabytes min = minutes
TB = terabytes h = hours
d = days
The default values of these variables are driven from the -D command-line option or PGDATA environment variable, represented here as ConfigDir.

```
data_directory = 'ConfigDir'
    # use data in another directory
    # (change requires restart)

hba_file = 'ConfigDir/pg_hba.conf'
    # host-based authentication file
    # (change requires restart)

ident_file = 'ConfigDir/pg_ident.conf'
    # ident configuration file
    # (change requires restart)

# If external_pid_file is not explicitly set, no extra PID file is written.
external_pid_file = ''
    # write an extra PID file
    # (change requires restart)
```
Connections and Authentication

#listen_addresses = 'localhost'

#port = 5432
max_connections = 100
#superuser_reserved_connections = 3
#unix_socket_directories = '/tmp'

#unix_socket_group = ''
#unix_socket_permissions = 0777

#bonjour = off

#bonjour_name = ''
Security and Authentication

#authentication_timeout = 1min # 1s-600s
#ssl = off
#ssl_ciphers = 'HIGH:MEDIUM:+3DES:!aNULL' # allowed SSL ciphers
#ssl_prefer_server_ciphers = on
#ssl_ecdh_curve = 'prime256v1'
#ssl_dh_params_file = ''
#ssl_cert_file = 'server.crt'
#ssl_key_file = 'server.key'
#ssl_ca_file = ''
#ssl_crl_file = ''
#password_encryption = md5 # md5 or scram-sha-256
#db_user_namespace = off
#row_security = on

GSSAPI using Kerberos
#krb_server_keyfile = ''
#krb_caseins_users = off
#tcp_keepalives_idle = 0
TCP_KEEPIDLE, in seconds;
0 selects the system default

#tcp_keepalives_interval = 0
TCP_KEEPINTVL, in seconds;
0 selects the system default

#tcp_keepalives_count = 0
TCP_KEEPCNT;
shared_buffers = 128MB
huge_pages = try
temp_buffers = 8MB
max_prepared_transactions = 0

Caution: it is not advisable to set max_prepared_transactions nonzero unless
you actively intend to use prepared transactions.
work_mem = 4MB
maintenance_work_mem = 64MB
replacement_sort_tuples = 150000
autovacuum_work_mem = -1
max_stack_depth = 2MB
dynamic_shared_memory_type = posix

min 128kB
(change requires restart)
on, off, or try
(change requires restart)
min 800kB
zero disables the feature
(change requires restart)
min 64kB
min 1MB
limits use of replacement selection sort
min 1MB, or -1 to use maintenance_work_mem
min 100kB
the default is the first option
supported by the operating system:
posix
sysv
windows
mmap
use none to disable dynamic shared memory
(change requires restart)
Sizing Shared Memory

The diagram illustrates the memory allocation in a PostgreSQL database system. The memory is segmented into several categories:

- **Kernel Disk Buffer Cache**
- **Shared Buffer Cache (shared_buffers)**
- **Postgres Session (work_mem)**
- **Kernel**
- **Free**
- **Swap**

Memory pages move between these categories based on usage:

- **Page In (bad)**: Memory pages are brought into the system from swap.
- **Page Out**: Memory pages are moved out to swap when the system runs low on memory.

The diagram visually represents the allocation and movement of memory, helping to understand how shared memory is sized and managed in the system.
Disk and Kernel Resources

- Disk -

```
#temp_file_limit = -1  # limits per-process temp file space
# in kB, or -1 for no limit
```

- Kernel Resource Usage -

```
#max_files_per_process = 1000  # min 25
# (change requires restart)
#shared_preload_libraries = ''  # (change requires restart)
```
Vacuum and Background Writer

- Cost-Based Vacuum Delay -

#vacuum_cost_delay = 0 # 0-100 milliseconds
#vacuum_cost_page_hit = 1 # 0-10000 credits
#vacuum_cost_page_miss = 10 # 0-10000 credits
#vacuum_cost_page_dirty = 20 # 0-10000 credits
#vacuum_cost_limit = 200 # 1-10000 credits

- Background Writer -

#bgwriter_delay = 200ms # 10-10000ms between rounds
#bgwriter_lru_maxpages = 100 # 0-1000 max buffers written/round
#bgwriter_lru_multiplier = 2.0 # 0-10.0 multiplier on buffers scanned/round
#bgwriter_flush_after = 512kB # measured in pages, 0 disables
Asynchronous Behavior

- Asynchronous Behavior -

#effective_io_concurrency = 1 # 1-1000; 0 disables prefetching
#max_worker_processes = 8 # (change requires restart)
#max_parallel_workers_per_gather = 2 # taken from max_parallel_workers
#max_parallel_workers = 8 # maximum number of max_worker_processes that
#can be used in parallel queries
#old_snapshot_threshold = -1 # 1min-60d; -1 disables; 0 is immediate
#backend_flush_after = 0 # (change requires restart)
measured in pages, 0 disables
Write-Ahead Log (WAL)

```plaintext
#wal_level = replica  # minimal, replica, or logical
              # (change requires restart)
#fsync = on        # flush data to disk for crash safety
              # (turning this off can cause
              # unrecoverable data corruption)
#synchronous_commit = on
              # synchronization level;
              # off, local, remote_write, remote_apply, or on
#wal_sync_method = fsync
              # the default is the first option
              # supported by the operating system:
              #   open_datasync
              #   fdatasync (default on Linux)
              #   fsync
              #   fsync_writethrough
              #   open_sync
```
Write-Ahead Log (WAL)

```#full_page_writes = on
#wal_compression = off
#wal_log_hints = off

#wal_buffers = -1
#wal_writer_delay = 200ms
#wal_writer_flush_after = 1MB

#commit_delay = 0
#commit_siblings = 5
```

recover from partial page writes
enable compression of full-page writes
also do full page writes of non-critical updates
(change requires restart)
min 32kB, -1 sets based on shared_buffers
(change requires restart)
1-10000 milliseconds
measured in pages, 0 disables

range 0-100000, in microseconds
range 1-1000
Write-Ahead Logging (Continued)

Query and Checkpoint Operations

Transaction Durability

PostgreSQL Shared Buffer Cache

Write-Ahead Log

Kernel Disk Buffer Cache

Disk Blocks

Postgres Backend

Postgres Backend

Postgres Backend

Recovery

fsync

fsync

fsync
Checkpoints and Archiving

#checkpoint_timeout = 5min # range 30s-1d
#max_wal_size = 1GB
#min_wal_size = 80MB
#checkpoint_completion_target = 0.5 # checkpoint target duration, 0.0 - 1.0
#checkpoint_flush_after = 256kB # measured in pages, 0 disables
#checkpoint_warning = 30s # 0 disables

- Archiving -

#archive_mode = off # enables archiving; off, on, or always
(change requires restart)
#archive_command = '' # command to use to archive a logfile segment
placeholders: %p = path of file to archive
%f = file name only
e.g., 'test ! -f /mnt/server/archivedir/%f && cp %p ...
#archive_timeout = 0 # force a logfile segment switch after this
number of seconds; 0 disables
Write-Ahead Logging (Continued)

PostgreSQL Shared Buffer Cache

Begin 1

Write–Ahead Log

End 1

Rotate
Set these on the master and on any standby that will send replication data.

```
#max_wal_senders = 10 # max number of walsender processes
                     # (change requires restart)
#wal_keep_segments = 0 # in logfile segments, 16MB each; 0 disables
#wal_sender_timeout = 60s # in milliseconds; 0 disables
#max_replication_slots = 10 # max number of replication slots
                            # (change requires restart)
#track_commit_timestamp = off # collect timestamp of transaction commit
                             # (change requires restart)
```
These settings are ignored on a standby server.

#synchronous_standby_names = '' # standby servers that provide sync rep
 # method to choose sync standbys, number of sync standbys,
 # and comma-separated list of application_name
 # from standby(s); '*' = all
#vacuum_defer_cleanup_age = 0 # number of xacts by which cleanup is delayed
Standby Replication Server

These settings are ignored on a master server.

#hot_standby = on # "off" disallows queries during recovery
 # (change requires restart)
#max_standby_archive_delay = 30s # max delay before canceling queries
 # (change requires restart)
#wal_level = replica
(change requires restart)
#fsync = on # flush data to disk for crash safety
 # (turning this off can cause
 # unrecoverable data corruption)
#synchronous_commit = on # synchronization level;
 # off, local, remote_write, remote_apply, or on
#wal_sync_method = fsync # the default is the first option
 # supported by the operating system:
 # open_dataset
 # fdataset (default on Linux)
 # fsync
 # fsync_writethrough
 # open_sync
when reading WAL from archive;
-1 allows indefinite delay
Standby Replication Server

#max_standby_streaming_delay = 30s # max delay before canceling queries
when reading streaming WAL;
-1 allows indefinite delay

#wal_receiver_status_interval = 10s # send replies at least this often
0 disables

#hot_standby_feedback = off # send info from standby to prevent
query conflicts

#wal_receiver_timeout = 60s # time that receiver waits for
communication from master
in milliseconds; 0 disables

#wal_retrieve_retry_interval = 5s # time to wait before retrying to
retrieve WAL after a failed attempt
These settings are ignored on a publisher.

```
#max_logical_replication_workers = 4       # taken from max_worker_processes
    # (change requires restart)
#max_sync_workers_per_subscription = 2    # taken from max_logical_replication_workers
```
Planner Method Tuning

#enable_bitmapscan = on
#enable_hashagg = on
#enable_hashjoin = on
#enable_indexscan = on
#enable_indexonlyscan = on
#enable_material = on
#enable_mergejoin = on
#enable_nestloop = on
#enable_seqscan = on
#enable_sort = on
#enable_tidscan = on
Planner Constants

#seq_page_cost = 1.0 # measured on an arbitrary scale
#random_page_cost = 4.0 # same scale as above
#cpu_tuple_cost = 0.01 # same scale as above
#cpu_index_tuple_cost = 0.005 # same scale as above
#cpu_operator_cost = 0.0025 # same scale as above
#parallel_tuple_cost = 0.1 # same scale as above
#parallel_setup_cost = 1000.0 # same scale as above
#min_parallel_table_scan_size = 8MB
#min_parallel_index_scan_size = 512kB
#effective_cache_size = 4GB
#geqo = on
#geqo_threshold = 12
#geqo_effort = 5
#geqo_pool_size = 0
#geqo_generations = 0
#geqo_selection_bias = 2.0
#geqo_seed = 0.0
#default_statistics_target = 100 # range 1-10000
#constraint_exclusion = partition # on, off, or partition
#cursor_tuple_fraction = 0.1 # range 0.0-1.0
#from_collapse_limit = 8 # 1 disables collapsing of explicit
#join_collapse_limit = 8 # JOIN clauses
#force_parallel_mode = off

Miscellaneous Planner Options
#log_destination = 'stderr'

Valid values are combinations of
stderr, csvlog, syslog, and eventlog,
depending on platform. csvlog
requires logging_collector to be on.

This is used when logging to stderr:
#logging_collector = off

Enable capturing of stderr and csvlog
into log files. Required to be on for
csvlogs.
(change requires restart)

These are only used if logging_collector is on:
#log_directory = 'log'

directory where log files are written,
can be absolute or relative to PGDATA

#log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'

log file name pattern,
can include strftime() escapes

#log_file_mode = 0600

creation mode for log files,
begin with 0 to use octal notation
Where To Log (rotation)

#log_truncate_on_rotation = off

If on, an existing log file with the
same name as the new log file will be
truncated rather than appended to.
But such truncation only occurs on
time-driven rotation, not on restarts
or size-driven rotation. Default is
off, meaning append to existing files
in all cases.

#log_rotation_age = 1d

Automatic rotation of logfiles will
happen after that time. 0 disables.

#log_rotation_size = 10MB

Automatic rotation of logfiles will
happen after that much log output.
0 disables.
Where to Log (syslog)

```bash
#syslog_facility = 'LOCAL0'
#syslog_ident = 'postgres'
#syslog_sequence_numbers = on
#syslog_split_messages = on

# This is only relevant when logging to eventlog (win32):
# (change requires restart)
#event_source = 'PostgreSQL'
```
When to Log

#client_min_messages = notice
values in order of decreasing detail:
debug5
debug4
debug3
debug2
debug1
log
notice
warning
error

#log_min_messages = warning
values in order of decreasing detail:
debug5
debug4
debug3
debug2
debug1
info
notice
warning
error
log
fatal
panic
When to Log (Continued)

#log_min_error_statement = error
values in order of decreasing detail:
debug5
debug4
debug3
debug2
debug1
info
notice
warning
error
log
fatal
panic (effectively off)

#log_min_duration_statement = -1
-1 is disabled, 0 logs all statements
and their durations, > 0 logs only
statements running at least this number
of milliseconds
#debug_print_parse = off
#debug_print_rewritten = off
#debug_print_plan = off
#debug_pretty_print = on
#log_checkpoints = off
#log_connections = off
#log_disconnections = off
#log_duration = off
#log_error_verbosity = default # terse, default, or verbose messages
#log_hostname = off

What to Log
#log_line_prefix = '%m [%p] '

special values:
%a = application name
%u = user name
%d = database name
%r = remote host and port
%h = remote host
%p = process ID
%t = timestamp without milliseconds
%m = timestamp with milliseconds
%n = timestamp with milliseconds (as a Unix epoch)
%i = command tag
%e = SQL state
%c = session ID
%l = session line number
%s = session start timestamp
%v = virtual transaction ID
%x = transaction ID (0 if none)
%q = stop here in non-session processes
%% = '%'
e.g., '<%u%%%d> '
What to Log (Continued)

```plaintext
#log_lock_waits = off
#log_statement = 'none'
#log_replication_commands = off
#log_temp_files = -1

log_timezone = 'US/Eastern'

# - Process Title -

#cluster_name = ''
#update_process_title = on

# log lock waits >= deadlock_timeout
# none, ddl, mod, all

# log temporary files equal or larger
# than the specified size in kilobytes;
# -1 disables, 0 logs all temp files

# added to process titles if nonempty
# (change requires restart)
```
- Query/Index Statistics Collector -

#track_activities = on
#track_counts = on
#track_io_timing = off
#track_functions = none # none, pl, all
#track_activity_query_size = 1024 # (change requires restart)
#stats_temp_directory = 'pg_stat_tmp'

- Statistics Monitoring -

#log_parser_stats = off
#log_planner_stats = off
#log_executor_stats = off
#log_statement_stats = off
Autovacuum

autovacuum = on # Enable autovacuum subprocess? 'on'
requires track_counts to also be on.
#log_autovacuum_min_duration = -1 # -1 disables, 0 logs all actions and
their durations, > 0 logs only
actions running at least this number
of milliseconds.
#autovacuum_max_workers = 3 # max number of autovacuum subprocesses
(change requires restart)
#autovacuum_naptime = 1min # time between autovacuum runs
#autovacuum_vacuum_threshold = 50 # min number of row updates before
vacuum
#autovacuum_analyze_threshold = 50 # min number of row updates before
analyze
#autovacuum_vacuum_scale_factor = 0.2 # fraction of table size before vacuum
#autovacuum_analyze_scale_factor = 0.1 # fraction of table size before analyze
#autovacuum_freeze_max_age = 200000000 # maximum XID age before forced vacuum
(change requires restart)
#autovacuum_multixact_freeze_max_age = 400000000 # maximum multixact age
before forced vacuum
(change requires restart)
#autovacuum_vacuum_cost_delay = 20ms # default vacuum cost delay for
autovacuum, in milliseconds;
-1 means use vacuum_cost_delay
#autovacuum_vacuum_cost_limit = -1 # default vacuum cost limit for
autovacuum, -1 means use
vacuum_cost_limit
#search_path = '"$user', public' # schema names
#default_tablespace = '' # a tablespace name, '' uses the default
#temp_tablespaces = '' # a list of tablespace names, '' uses
only default tablespace
#check_function_bodies = on
#default_transaction_isolation = 'read committed'
#default_transaction_read_only = off
#default_transaction_deferrable = off
#session_replication_role = 'origin'
#statement_timeout = 0 # in milliseconds, 0 is disabled
#lock_timeout = 0 # in milliseconds, 0 is disabled
#idle_in_transaction_session_timeout = 0 # in milliseconds, 0 is disabled
#vacuum_freeze_min_age = 50000000
#vacuum_freeze_table_age = 150000000
#vacuum_multixact_freeze_min_age = 5000000
#vacuum_multixact_freeze_table_age = 150000000
#bytea_output = 'hex' # hex, escape
#xmlbinary = 'base64'
#xmloption = 'content'
#gin_fuzzy_search_limit = 0
#gin_pending_list_limit = 4MB
datestyle = 'iso, mdy'
#intervalstyle = 'postgres'
timezone = 'US/Eastern'
#timezone_abbreviations = 'Default'
 # Select the set of available time zone abbreviations. Currently, there are
 # Default
 # Australia (historical usage)
 # India
 # You can create your own file in
 # share/timezonesets/.
#extra_float_digits = 0
#client_encoding = sql_ascii
 # min -15, max 3
 # actually, defaults to database encoding

These settings are initialized by initdb, but they can be changed.
lc_messages = 'en_US.UTF-8'
 # locale for system error message strings
lc_monetary = 'en_US.UTF-8'
 # locale for monetary formatting
lc_numeric = 'en_US.UTF-8'
 # locale for number formatting
lc_time = 'en_US.UTF-8'
 # locale for time formatting
default configuration for text search
default_text_search_config = 'pg_catalog.english'
Other Defaults

#dynamic_library_path = '$libdir'
#local_preload_libraries = ''
#session_preload_libraries = ''
Lock Management

#deadlock_timeout = 1s
#max_locks_per_transaction = 64

#max_pred_locks_per_transaction = 64

#max_pred_locks_per_relation = -2

#max_pred_locks_per_page = 2
- Previous PostgreSQL Versions -

$array_nulls = on$

#backslash_quote = safe_encoding # on, off, or safe_encoding
#default_with_oids = off
#escape_string_warning = on
#lo_compat_privileges = off
#operator_precedence_warning = off
#quote_all_identifiers = off
#standard_conforming_strings = on
#synchronize_seqscans = on

- Other Platforms and Clients -

#transform_null_equals = off
#exit_on_error = off # terminate session on any error?
#restart_after_crash = on # reinitialize after backend crash?
#include_dir = 'conf.d'

#include_if_exists = 'exists.conf'
#include = 'special.conf'

include files ending in '.conf' from
directory 'conf.d'
include file only if it exists
include file
Interfaces

• Installing
 • Compiled Languages (C, ecpg)
 • Scripting Language (Perl, Python, PHP)
 • SPI

• Connection Pooling
Include Files

$ ls -CF include/
ecpg_config.h libpq/ pgtypes_date.h sql3types.h
ectgerrno.h libpq-events.h pgtypes_error.h sqlca.h
ecpg_informix.h libpq-fe.h pgtypes_interval.h sqlda-compat.h
ecpglib.h pg_config_ext.h pgtypes_numeric.h sqlda.h
ecpgtype.h pg_config.h pgtypes_timestamp.h sqlda-native.h
informix/ pg_config_manual.h postgres_ext.h
internal/ pg_config_os.h server/
Library Files

$ ls -CF lib/

ascii_and_mic.so*
cyrillic_and_mic.so*
dict_snowball.so*
euc2004_sjis2004.so*
euc_cn_and_mic.so*
euc jp_and_sjis.so*
euc kr_and_mic.so*
euc tw_and_big5.so*
latin2_and_win1250.so*
latin_and_mic.so*
lbecpg.a
lbecpg_compat.a
lbecpg_compat.so@
lbecpg_compat.so.3@
lbecpg_compat.so.3.10*
lbecpg.so@
lbecpg.so.6@
lbecpg.so.6.10*
lbpgcommon.a
libpgfeutils.a
libpgport.a
libpgtypes.a
libpgtypes.so@
libpgtypes.so.3@
libpgtypes.so.3.10*
libpq.a
libpq.so@
libpq.so.5@
libpq.so.5.10*
libpqwalreceiver.so*
pgoutput.so*
pgxs/
pkgconfig/
plperl.so*
plpgsql.so*
plpython2.so*
utf8_and_ascii.so*
utf8_and_big5.so*
utf8_and_cyrillic.so*
utf8_and_euc2004.so*
utf8_and_euc_cn.so*
utf8_and_euc_dp.so*
utf8_and_euc_tw.so*
utf8_and_gb18030.so*
utf8_and_gbk.so*
utf8_and_iso8859_1.so*
utf8_and_iso8859.so*
utf8_and_johab.so*
utf8_and_sjis2004.so*
utf8_and_sjis.so*
utf8_and_uhc.so*
utf8_and_win.so*
3. Maintenance
Backup

- File system-level (physical)
 - tar, cpio while shutdown
 - file system snapshot
 - rsync, shutdown, rsync, restart
- pg_dump/pg_dumpall (logical)
- Restore/pg_restore with custom format
Continuous Archiving / Point-In-Time Recovery (PITR)

File System-Level Backup
Continuous Archive (WAL)

02:00
09:00
11:00
13:00
PITR Backup Procedures

1. `archive_mode = on`
2. `wal_level = archive`
3. `archive_command = 'cp -i %p /mnt/server/pgsql/%f < /dev/null'`
4. `SELECT pg_start_backup('label');`
5. Perform file system-level backup (can be inconsistent)
6. `SELECT pg_stop_backup();`

`pg_basebackup` does this automatically.
PITR Recovery

File System Level Backup

Continuous Archive (WAL)

17:00 17:30 17:40 17:55
PITR Recovery Procedures

1. Stop postmaster
2. Restore file system-level backup
3. Make adjustments as outlined in the documentation
4. Create recovery.conf
5. `restore_command = 'cp /mnt/server/pgsql/%f %p'`
6. Start the postmaster
Continuous Archive Management

Simplify backups and WAL archive file management with:

• *pgBackRest*
• *barman*
Data Maintenance

- `VACUUM` (nonblocking) records free space into `.fsm` (free space map) files
- `ANALYZE` collects optimizer statistics
- `VACUUM FULL` (blocking) shrinks the size of database disk files
Automating Tasks

Autovacuum handles vacuum and analyze tasks automatically.
Checkpoints

- Write all dirty shared buffers
- Sync all dirty kernel buffers
- Recycle WAL files
- Controlled by `checkpoint_timeout` and `max_wal_size`
4. Monitoring
$ ps -f -Upostgres

<table>
<thead>
<tr>
<th>PID</th>
<th>PPID</th>
<th>UID</th>
<th>TTY</th>
<th>TIME</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>825</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:06.57</td>
<td>/u/pgsql/bin/postmaster -i</td>
</tr>
<tr>
<td>829</td>
<td>825</td>
<td>0</td>
<td>0</td>
<td>0:35.03</td>
<td>writer process (postmaster)</td>
</tr>
<tr>
<td>830</td>
<td>825</td>
<td>0</td>
<td>0</td>
<td>0:16.07</td>
<td>wal writer process (postmaster)</td>
</tr>
<tr>
<td>831</td>
<td>825</td>
<td>0</td>
<td>0</td>
<td>0:11.34</td>
<td>autovacuum launcher process (postmaster)</td>
</tr>
<tr>
<td>832</td>
<td>825</td>
<td>0</td>
<td>0</td>
<td>0:07.63</td>
<td>stats collector process (postmaster)</td>
</tr>
<tr>
<td>13003</td>
<td>825</td>
<td>0</td>
<td>3:44PM</td>
<td>0:00.01</td>
<td>postgres test [local] idle (postmaster)</td>
</tr>
<tr>
<td>13002</td>
<td>12997</td>
<td>0</td>
<td>3:44PM</td>
<td>0:00.03</td>
<td>/u/pgsql/bin/psql test</td>
</tr>
</tbody>
</table>
$ top -c
top - 10:29:47 up 23 days, 18:53, 6 users, load average: 1.73, 1.49, 0.81
Tasks: 387 total, 2 running, 385 sleeping, 0 stopped, 0 zombie
%Cpu(s): 5.9 us, 0.5 sy, 0.0 ni, 93.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 24734444 total, 19187724 used, 5546720 free, 532280 buffers
KiB Swap: 6369276 total, 168292 used, 6200984 free. 16936936 cached Mem

<table>
<thead>
<tr>
<th>PID</th>
<th>USER</th>
<th>PR</th>
<th>NI</th>
<th>VIRT</th>
<th>RES</th>
<th>SHR</th>
<th>%CPU</th>
<th>%MEM</th>
<th>TIME+</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>32037</td>
<td>postgres</td>
<td>20</td>
<td>0</td>
<td>190980</td>
<td>27940</td>
<td>21420</td>
<td>R</td>
<td>100.0</td>
<td>0.1</td>
<td>0:09.74 postgres: postgres test [local] INSERT</td>
</tr>
<tr>
<td>32061</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>26056</td>
<td>3240</td>
<td>2444</td>
<td>R</td>
<td>0.7</td>
<td>0.0</td>
<td>0:00.09 top -c</td>
</tr>
</tbody>
</table>
Query Monitoring

```sql
SELECT * FROM pg_stat_activity;
```

```
<table>
<thead>
<tr>
<th>datid</th>
<th>16384</th>
</tr>
</thead>
<tbody>
<tr>
<td>datname</td>
<td>test</td>
</tr>
<tr>
<td>pid</td>
<td>16382</td>
</tr>
<tr>
<td>usesysid</td>
<td>10</td>
</tr>
<tr>
<td>usename</td>
<td>postgres</td>
</tr>
<tr>
<td>application_name</td>
<td>psql</td>
</tr>
<tr>
<td>client_addr</td>
<td></td>
</tr>
<tr>
<td>client_hostname</td>
<td></td>
</tr>
<tr>
<td>client_port</td>
<td>-1</td>
</tr>
<tr>
<td>backend_start</td>
<td>2018-04-15 09:00:26.467813-04</td>
</tr>
<tr>
<td>xact_start</td>
<td>2018-04-15 09:00:48.028667-04</td>
</tr>
<tr>
<td>query_start</td>
<td>2018-04-15 09:00:48.028667-04</td>
</tr>
<tr>
<td>state_change</td>
<td>2018-04-15 09:00:48.028671-04</td>
</tr>
<tr>
<td>wait_event_type</td>
<td></td>
</tr>
<tr>
<td>wait_event</td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>active</td>
</tr>
<tr>
<td>backend_xid</td>
<td></td>
</tr>
<tr>
<td>backend_xmin</td>
<td>556</td>
</tr>
<tr>
<td>query</td>
<td>SELECT * FROM pg_stat_activity;</td>
</tr>
<tr>
<td>backend_type</td>
<td>client backend</td>
</tr>
</tbody>
</table>
```

```
82 / 117
```
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Type</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>pg_stat_all_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_all_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_database</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_sys_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_sys_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_user_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_stat_user_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_all_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_all_sequences</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_all_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_sys_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_sys_sequences</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_sys_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_user_indexes</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_user_sequences</td>
<td>view</td>
<td>postgres</td>
</tr>
<tr>
<td>pg_statio_user_tables</td>
<td>view</td>
<td>postgres</td>
</tr>
</tbody>
</table>
test=> SELECT * FROM pg_stat_database;
...
-[RECORD 4]-+----------
datid | 16384
datname | test
numbackends | 1
xact_commit | 188
xact_rollback | 0
blks_read | 95
blks_hit | 11832
tup_returned | 64389
tup_fetched | 2938
tup_inserted | 0
tup_updated | 0
tup_deleted | 0
Table Activity

```sql
test=> SELECT * FROM pg_stat_all_tables;
-[
   RECORD 10 |-------------------------------------
        relid  | 2616
     schemaname  | pg_catalog
        relname  | pg_opclass
         seq_scan  | 2
   seq_tup_read  | 2
         idx_scan  | 99
   idx_tup_fetch  | 99
       n_tup_ins  | 0
       n_tup_upd  | 0
       n_tup_del  | 0
   n_tup_hot_upd  | 0
       n_live_tup  | 0
      n_dead_tup  | 0
        last_vacuum  |
       last_autovacuum  |
         last_analyze  |
      last_autoanalyze  |
   ]

85 / 117
```
Table Block Activity

```sql
test=> SELECT * FROM pg_statio_all_tables;
-[
  RECORD 50 ]---------------------------------------
relid  | 2602
schemaname   | pg_catalog
relname       | pg_amop
heap_blks_read | 3
heap_blks_hit  | 114
idx_blks_read  | 5
idx_blks_hit   | 303
toast_blks_read|
toast_blks_hit |
tidx_blks_read  |
tidx_blks_hit   |
```

86 / 117
Analyzing Activity

- Heavily used tables
- Unnecessary indexes
- Additional indexes
- Index usage
- TOAST usage
$ vmstat 5

<table>
<thead>
<tr>
<th>r</th>
<th>b</th>
<th>w</th>
<th>avm</th>
<th>fre</th>
<th>flt</th>
<th>re</th>
<th>pi</th>
<th>po</th>
<th>fr</th>
<th>sr</th>
<th>s0</th>
<th>s0</th>
<th>in</th>
<th>sy</th>
<th>cs</th>
<th>us</th>
<th>sy</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>501820</td>
<td>48520</td>
<td>1234</td>
<td>86</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>263</td>
<td>2881</td>
<td>599</td>
<td>10</td>
<td>4</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>512796</td>
<td>46812</td>
<td>1422</td>
<td>201</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>259</td>
<td>6483</td>
<td>827</td>
<td>4</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>542260</td>
<td>44356</td>
<td>788</td>
<td>137</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>286</td>
<td>5698</td>
<td>741</td>
<td>2</td>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>539708</td>
<td>41868</td>
<td>576</td>
<td>65</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>273</td>
<td>5721</td>
<td>819</td>
<td>16</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>547200</td>
<td>32964</td>
<td>454</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>253</td>
<td>5736</td>
<td>948</td>
<td>50</td>
<td>4</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>556140</td>
<td>23884</td>
<td>461</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>249</td>
<td>5917</td>
<td>959</td>
<td>52</td>
<td>3</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>535136</td>
<td>46280</td>
<td>1056</td>
<td>141</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>261</td>
<td>6417</td>
<td>890</td>
<td>24</td>
<td>6</td>
<td>70</td>
</tr>
</tbody>
</table>
```
$ iostat 5

<table>
<thead>
<tr>
<th>tty</th>
<th>tin</th>
<th>tout</th>
<th>sps</th>
<th>tps</th>
<th>msp</th>
<th>sps</th>
<th>tps</th>
<th>msp</th>
<th>sps</th>
<th>tps</th>
<th>msp</th>
<th>% cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>27.3</td>
<td>0</td>
<td>0</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>sd1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>9</td>
</tr>
<tr>
<td>sd2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>4</td>
</tr>
</tbody>
</table>
```
test=> \df *size*

<table>
<thead>
<tr>
<th>Schema</th>
<th>Name</th>
<th>Result data type</th>
<th>Argument data types</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>pg_catalog</td>
<td>pg_column_size</td>
<td>integer</td>
<td>"any"</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_database_size</td>
<td>bigint</td>
<td>name</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_database_size</td>
<td>bigint</td>
<td>oid</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_indexes_size</td>
<td>bigint</td>
<td>regclass</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_relation_size</td>
<td>bigint</td>
<td>regclass</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_relation_size</td>
<td>bigint</td>
<td>regclass, text</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_size_pretty</td>
<td>text</td>
<td>bigint</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_table_size</td>
<td>bigint</td>
<td>regclass</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_tablespace_size</td>
<td>bigint</td>
<td>name</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_tablespace_size</td>
<td>bigint</td>
<td>oid</td>
<td>normal</td>
</tr>
<tr>
<td>pg_catalog</td>
<td>pg_total_relation_size</td>
<td>bigint</td>
<td>regclass</td>
<td>normal</td>
</tr>
</tbody>
</table>
$ oid2name
All databases:

18720 = test1
1 = template1
18719 = template0
18721 = test
18735 = postgres
18736 = cssi
$ cd /usr/local/pgsql/data/base
$ oid2name
All databases:

16817 = test2
16578 = x
16756 = test
1 = template1
16569 = template0
16818 = test3
16811 = floattest

$ cd 16756
$ ls 1873*
18730 18731 18732 18735 18736 18737 18738 18739
Table File Mapping

$ oid2name -d test -o 18737
Tablename of oid 18737 from database "test":

18737 = ips

$ oid2name -d test -t ips
Oid of table ips from database "test":

18737 = ips

$ # show disk usage per database
$ cd /usr/local/pgsql/data/base
$ du -s * |
> while read SIZE OID
> do
> echo "$SIZE `oid2name -q | grep ^$OID' `"
> done |
> sort -rn
2256 18721 = test
2135 18735 = postgres
Disk Balancing

- Move pg_wal to another drive using symlinks
- Tablespaces
Per-Database Tablespaces

DB1 DB2 DB3 DB4

Disk 1 Disk 2 Disk 3
Per-Object Tablespaces

disk1 tab2 index constraint

Disk 1 Disk 2 Disk 3
Analyzing Locking

```
$ ps -f -U postgres

<table>
<thead>
<tr>
<th>PID</th>
<th>TT</th>
<th>STAT</th>
<th>TIME</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>9874</td>
<td>??</td>
<td>I</td>
<td>0:00.07</td>
<td>postgres test [local] idle in transaction (postmaster)</td>
</tr>
<tr>
<td>9835</td>
<td>??</td>
<td>S</td>
<td>0:00.05</td>
<td>postgres test [local] UPDATE waiting (postmaster)</td>
</tr>
<tr>
<td>10295</td>
<td>??</td>
<td>S</td>
<td>0:00.05</td>
<td>postgres test [local] DELETE waiting (postmaster)</td>
</tr>
</tbody>
</table>

test=> SELECT * FROM pg_locks;

<table>
<thead>
<tr>
<th>relation</th>
<th>database</th>
<th>transaction</th>
<th>pid</th>
<th>mode</th>
<th>granted</th>
</tr>
</thead>
<tbody>
<tr>
<td>17143</td>
<td>17142</td>
<td></td>
<td>9173</td>
<td>AccessShareLock</td>
<td>t</td>
</tr>
<tr>
<td>17143</td>
<td>17142</td>
<td></td>
<td>9173</td>
<td>RowExclusiveLock</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>472</td>
<td>ExclusiveLock</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>468</td>
<td>ShareLock</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td>ExclusiveLock</td>
<td>t</td>
</tr>
<tr>
<td>16759</td>
<td>17142</td>
<td></td>
<td>9380</td>
<td>AccessShareLock</td>
<td>t</td>
</tr>
<tr>
<td>17143</td>
<td>17142</td>
<td></td>
<td>9338</td>
<td>AccessShareLock</td>
<td>t</td>
</tr>
<tr>
<td>17143</td>
<td>17142</td>
<td></td>
<td>9338</td>
<td>RowExclusiveLock</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>468</td>
<td>ExclusiveLock</td>
<td>t</td>
</tr>
</tbody>
</table>
```
Miscellaneous Tasks

- Log file rotation, syslog
- Upgrading
 - pg_dump, restore
 - pg_upgrade
 - Slony
- Migration
Administration Tools

- pgadmin
- phppgadmin
External Monitoring Tools

- Alerting: check_postgres, tail_n_mail, Nagios
- Server analysis: Munin, Cacti, Zabbix, Nagios, MRTG, Prometheus, Grafana
- Queries: pg_stat_statements, auto_explain, pgbadger
- Commercial: Postgres Enterprise Manager (PEM), Circonus, VividCortex
5. Recovery

https://www.flickr.com/photos/coastguardnews/
Nothing Required. Transactions in progress are rolled back.
Graceful Postgres Server Shutdown

Nothing Required. Transactions in progress are rolled back.
Nothing Required. Transactions in progress are rolled back.
Nothing Required. Transactions in progress are rolled back. Partial page writes are repaired.
Disk Failure

Restore from previous backup or use PITR.
Accidental DELETE

Recover table from previous backup, perhaps using pg_restore. It is possible to modify the backend code to make deleted tuples visible, dump out the deleted table and restore the original code. All tuples in the table since the previous vacuum will be visible. It is possible to restrict that so only tuples deleted by a specific transaction are visible.
See pg_resetwal. Review recent transactions and identify any damage, including partially committed transactions.
It may be necessary to create an empty file with the deleted file name so the object can be deleted, and then the object restored from backup.
Accidental DROP TABLE

Restore from previous backup.
Recreate index.
Accidental DROP DATABASE

Restore from previous backup.
Restart problems are usually caused by write-ahead log problems. See pg_resetwal. Review recent transactions and identify any damage, including partially committed transactions.
Index Corruption

Use REINDEX.
Try reindexing the table. Try identifying the corrupt OID of the row and transfer the valid rows into another table using `SELECT ... INTO ... WHERE oid != ###`. Use `pageinspect` to analyze the internal structure of the table.
Conclusion

https://momjian.us/presentations