
Postgres Window Magic

BRUCE MOMJIAN

This presentation explains the many window function facilities
and how they can be used to produce useful SQL query results.
Creative Commons Attribution License http://momjian.us/presentations

Last updated: May, 2017

1 / 80

Outline

1. Introduction to window functions

2. Window function syntax

3. Window syntax with generic aggregates

4. Window-specific functions

5. Window function examples

6. Considerations

2 / 80

1. Introduction to Window Functions

https://www.flickr.com/photos/conalg/

3 / 80

Postgres Data Analytics Features

◮ Aggregates

◮ Optimizer

◮ Server-side languages, e.g. PL/R

◮ Window functions

◮ Bitmap heap scans

◮ Tablespaces

◮ Data partitioning

◮ Materialized views

◮ Common table expressions (CTE)

◮ BRIN indexes

◮ GROUPING SETS, ROLLUP, CUBE

◮ Parallelism

◮ Sharding (in progress)

4 / 80

What Is a Window Function?

A window function performs a calculation across a set of table
rows that are somehow related to the current row. This is
comparable to the type of calculation that can be done with an
aggregate function. However, window functions do not cause
rows to become grouped into a single output row like
non-window aggregate calls would. Instead, the rows retain their
separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

https://www.postgresql.org/docs/current/static/
tutorial-window.html

5 / 80

https://www.postgresql.org/docs/current/static/tutorial-window.html
https://www.postgresql.org/docs/current/static/tutorial-window.html

Keep Your Eye on the Red (Text)

https://www.flickr.com/photos/alltheaces/

6 / 80

Count to Ten

SELECT *

FROM generate_series(1, 10) AS f(x);

x

1
2
3
4
5
6
7
8
9

10

All the queries used in this presentation are available at http://
momjian.us/main/writings/pgsql/window.sql.

7 / 80

http://momjian.us/main/writings/pgsql/window.sql
http://momjian.us/main/writings/pgsql/window.sql

Simplest Window Function

SELECT x, SUM(x) OVER ()

FROM generate_series(1, 10) AS f(x);

x | sum
----+-----
1 | 55
2 | 55
3 | 55
4 | 55
5 | 55
6 | 55
7 | 55
8 | 55
9 | 55

10 | 55

8 / 80

Two OVER Clauses

SELECT x, COUNT(x) OVER (), SUM(x) OVER ()

FROM generate_series(1, 10) AS f(x);

x | count | sum
----+-------+-----
1 | 10 | 55
2 | 10 | 55
3 | 10 | 55
4 | 10 | 55
5 | 10 | 55
6 | 10 | 55
7 | 10 | 55
8 | 10 | 55
9 | 10 | 55

10 | 10 | 55

9 / 80

WINDOW Clause

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)

WINDOW w AS ();

x | count | sum
----+-------+-----
1 | 10 | 55
2 | 10 | 55
3 | 10 | 55
4 | 10 | 55
5 | 10 | 55
6 | 10 | 55
7 | 10 | 55
8 | 10 | 55
9 | 10 | 55

10 | 10 | 55

10 / 80

Let’s See the Defaults

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 10 | 55
2 | 10 | 55
3 | 10 | 55
4 | 10 | 55
5 | 10 | 55
6 | 10 | 55
7 | 10 | 55
8 | 10 | 55
9 | 10 | 55

10 | 10 | 55

11 / 80

2. Window Function Syntax

https://www.flickr.com/photos/bgreenlee/

12 / 80

Window Syntax

WINDOW (
[PARTITION BY …]
[ORDER BY …]
[
{ RANGE | ROWS }
{ frame_start | BETWEEN frame_start AND frame_end }

]
)

where frame_start and frame_end can be:

◮ UNBOUNDED PRECEDING

◮ value PRECEDING

◮ CURRENT ROW

◮ value FOLLOWING

◮ UNBOUNDED FOLLOWING

Bracketed clauses are optional, braces are selected.

https://www.postgresql.org/docs/current/static/
sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS

13 / 80

https://www.postgresql.org/docs/current/static/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS
https://www.postgresql.org/docs/current/static/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS

What Are the Defaults?

(RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

◮ No PARTITION BY (the set is a single partition)

◮ No ORDER BY (all rows are peers of CURRENT ROW)

◮ RANGE, not ROWS (CURRENT ROW includes all peers)

Since PARTITION BY and ORDER BY are not defaults but RANGE is
the default, CURRENT ROW defaults to representing all rows.

14 / 80

Visual Window Terms

x
−−
1
1
2
2
3

5

4

3
4

5

partition (which is the entire set here)

window frame in ROWS UNBOUNDED PRECEDING

window frame with ORDER BY x and defaults

literal current row (CURRENT ROW in ROWS mode)

peers defined by ORDER BY x (CURRENT ROW in RANGE mode)

15 / 80

SQL for Window Frames

x
−−
1
1
2
2
3

5

4

3
4

5

ROWS BETWEEN UNBOUNDED PRECEDING

ROWS UNBOUNDED PRECEDING

ORDER BY x UNBOUNDED PRECEDING

ROWS CURRENT ROW AND CURRENT ROW

ORDER BY x RANGE CURRENT ROW

AND UNBOUNDED FOLLOWING

(end frame default)

16 / 80

3. Window Syntax with Generic Aggregates

https://www.flickr.com/photos/azparrot/

17 / 80

Back to the Last Query

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 10 | 55
2 | 10 | 55
3 | 10 | 55
4 | 10 | 55
5 | 10 | 55
6 | 10 | 55
7 | 10 | 55
8 | 10 | 55
9 | 10 | 55

10 | 10 | 55

18 / 80

ROWS Instead of RANGE

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 2 | 3
3 | 3 | 6
4 | 4 | 10
5 | 5 | 15
6 | 6 | 21
7 | 7 | 28
8 | 8 | 36
9 | 9 | 45

10 | 10 | 55

19 / 80

Default End Frame (CURRENT ROW)

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)

WINDOW w AS (ROWS UNBOUNDED PRECEDING);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 2 | 3
3 | 3 | 6
4 | 4 | 10
5 | 5 | 15
6 | 6 | 21
7 | 7 | 28
8 | 8 | 36
9 | 9 | 45

10 | 10 | 55

20 / 80

Only CURRENT ROW

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

CURRENT ROW AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 1 | 2
3 | 1 | 3
4 | 1 | 4
5 | 1 | 5
6 | 1 | 6
7 | 1 | 7
8 | 1 | 8
9 | 1 | 9

10 | 1 | 10

21 / 80

Use Defaults

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)

WINDOW w AS (ROWS CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 1 | 2
3 | 1 | 3
4 | 1 | 4
5 | 1 | 5
6 | 1 | 6
7 | 1 | 7
8 | 1 | 8
9 | 1 | 9

10 | 1 | 10

22 / 80

UNBOUNDED FOLLOWING

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

CURRENT ROW AND UNBOUNDED FOLLOWING);

x | count | sum
----+-------+-----
1 | 10 | 55
2 | 9 | 54
3 | 8 | 52
4 | 7 | 49
5 | 6 | 45
6 | 5 | 40
7 | 4 | 34
8 | 3 | 27
9 | 2 | 19

10 | 1 | 10

23 / 80

PRECEDING

SELECT x, COUNT(*) OVER w, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

1 PRECEDING AND CURRENT ROW);

x | count | count | sum
----+-------+-------+-----
1 | 1 | 1 | 1
2 | 2 | 2 | 3
3 | 2 | 2 | 5
4 | 2 | 2 | 7
5 | 2 | 2 | 9
6 | 2 | 2 | 11
7 | 2 | 2 | 13
8 | 2 | 2 | 15
9 | 2 | 2 | 17

10 | 2 | 2 | 19

PRECEDING ignores nonexistent rows; they are not NULLs. 24 / 80

Use FOLLOWING

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

CURRENT ROW AND 1 FOLLOWING);

x | count | sum
----+-------+-----
1 | 2 | 3
2 | 2 | 5
3 | 2 | 7
4 | 2 | 9
5 | 2 | 11
6 | 2 | 13
7 | 2 | 15
8 | 2 | 17
9 | 2 | 19

10 | 1 | 10

25 / 80

3 PRECEDING

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ROWS BETWEEN

3 PRECEDING AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 2 | 3
3 | 3 | 6
4 | 4 | 10
5 | 4 | 14
6 | 4 | 18
7 | 4 | 22
8 | 4 | 26
9 | 4 | 30

10 | 4 | 34

26 / 80

ORDER BY

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)

WINDOW w AS (ORDER BY x);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 2 | 3
3 | 3 | 6
4 | 4 | 10
5 | 5 | 15
6 | 6 | 21
7 | 7 | 28
8 | 8 | 36
9 | 9 | 45

10 | 10 | 55

CURRENT ROW peers are rows with equal values for ORDER BY columns,
or all partition rows if ORDER BY is not specified.

27 / 80

Default Frame Specified

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)
WINDOW w AS (ORDER BY x RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 2 | 3
3 | 3 | 6
4 | 4 | 10
5 | 5 | 15
6 | 6 | 21
7 | 7 | 28
8 | 8 | 36
9 | 9 | 45

10 | 10 | 55

28 / 80

Only CURRENT ROW

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_series(1, 10) AS f(x)

WINDOW w AS (ORDER BY x RANGE CURRENT ROW);

x | count | sum
----+-------+-----
1 | 1 | 1
2 | 1 | 2
3 | 1 | 3
4 | 1 | 4
5 | 1 | 5
6 | 1 | 6
7 | 1 | 7
8 | 1 | 8
9 | 1 | 9

10 | 1 | 10

29 / 80

Create Table with Duplicates

CREATE TABLE generate_1_to_5_x2 AS
SELECT ceil(x/2.0) AS x

FROM generate_series(1, 10) AS f(x);

SELECT * FROM generate_1_to_5_x2;

x

1
1
2
2
3
3
4
4
5
5

30 / 80

Empty Window Specification

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS ();

x | count | sum
---+-------+-----
1 | 10 | 30
1 | 10 | 30
2 | 10 | 30
2 | 10 | 30
3 | 10 | 30
3 | 10 | 30
4 | 10 | 30
4 | 10 | 30
5 | 10 | 30
5 | 10 | 30

31 / 80

RANGE With Duplicates

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | count | sum
---+-------+-----
1 | 2 | 2
1 | 2 | 2
2 | 4 | 6
2 | 4 | 6
3 | 6 | 12
3 | 6 | 12
4 | 8 | 20
4 | 8 | 20
5 | 10 | 30
5 | 10 | 30

32 / 80

Show Defaults

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ORDER BY x RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
---+-------+-----
1 | 2 | 2
1 | 2 | 2
2 | 4 | 6
2 | 4 | 6
3 | 6 | 12
3 | 6 | 12
4 | 8 | 20
4 | 8 | 20
5 | 10 | 30
5 | 10 | 30

33 / 80

ROWS

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ORDER BY x ROWS BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | count | sum
---+-------+-----
1 | 1 | 1
1 | 2 | 2
2 | 3 | 4
2 | 4 | 6
3 | 5 | 9
3 | 6 | 12
4 | 7 | 16
4 | 8 | 20
5 | 9 | 25
5 | 10 | 30

34 / 80

RANGE on CURRENT ROW

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x RANGE CURRENT ROW);

x | count | sum
---+-------+-----
1 | 2 | 2
1 | 2 | 2
2 | 2 | 4
2 | 2 | 4
3 | 2 | 6
3 | 2 | 6
4 | 2 | 8
4 | 2 | 8
5 | 2 | 10
5 | 2 | 10

35 / 80

ROWS on CURRENT ROW

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x ROWS CURRENT ROW);

x | count | sum
---+-------+-----
1 | 1 | 1
1 | 1 | 1
2 | 1 | 2
2 | 1 | 2
3 | 1 | 3
3 | 1 | 3
4 | 1 | 4
4 | 1 | 4
5 | 1 | 5
5 | 1 | 5

36 / 80

PARTITION BY

SELECT x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (PARTITION BY x);

x | count | sum
---+-------+-----
1 | 2 | 2
1 | 2 | 2
2 | 2 | 4
2 | 2 | 4
3 | 2 | 6
3 | 2 | 6
4 | 2 | 8
4 | 2 | 8
5 | 2 | 10
5 | 2 | 10

Same as RANGE CURRENT ROW because the partition matches the
window frame.

37 / 80

Create Two Partitions

SELECT int4(x > 2), x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (PARTITION BY x > 2);

int4 | x | count | sum
------+---+-------+-----

0 | 1 | 4 | 6
0 | 1 | 4 | 6
0 | 2 | 4 | 6
0 | 2 | 4 | 6
1 | 3 | 6 | 24
1 | 3 | 6 | 24
1 | 4 | 6 | 24
1 | 4 | 6 | 24
1 | 5 | 6 | 24
1 | 5 | 6 | 24

38 / 80

ORDER BY

SELECT int4(x > 2), x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (PARTITION BY x > 2 ORDER BY x);

int4 | x | count | sum
------+---+-------+-----

0 | 1 | 2 | 2
0 | 1 | 2 | 2
0 | 2 | 4 | 6
0 | 2 | 4 | 6
1 | 3 | 2 | 6
1 | 3 | 2 | 6
1 | 4 | 4 | 14
1 | 4 | 4 | 14
1 | 5 | 6 | 24
1 | 5 | 6 | 24

39 / 80

Show Defaults

SELECT int4(x > 2), x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (PARTITION BY x > 2 ORDER BY x RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

int4 | x | count | sum
------+---+-------+-----

0 | 1 | 2 | 2
0 | 1 | 2 | 2
0 | 2 | 4 | 6
0 | 2 | 4 | 6
1 | 3 | 2 | 6
1 | 3 | 2 | 6
1 | 4 | 4 | 14
1 | 4 | 4 | 14
1 | 5 | 6 | 24
1 | 5 | 6 | 24

40 / 80

ROWS

SELECT int4(x > 2), x, COUNT(x) OVER w, SUM(x) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (PARTITION BY x > 2 ORDER BY x ROWS BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

int4 | x | count | sum
------+---+-------+-----

0 | 1 | 1 | 1
0 | 1 | 2 | 2
0 | 2 | 3 | 4
0 | 2 | 4 | 6
1 | 3 | 1 | 3
1 | 3 | 2 | 6
1 | 4 | 3 | 10
1 | 4 | 4 | 14
1 | 5 | 5 | 19
1 | 5 | 6 | 24

41 / 80

4. Window-Specific Functions

https://www.flickr.com/photos/michaeljohnbutton/

42 / 80

ROW_NUMBER

SELECT x, ROW_NUMBER() OVER w
FROM generate_1_to_5_x2

WINDOW w AS ();

x | row_number
---+------------
1 | 1
1 | 2
2 | 3
2 | 4
3 | 5
3 | 6
4 | 7
4 | 8
5 | 9
5 | 10

ROW_NUMBER takes no arguments and operates on partitions, not
window frames. https://www.postgresql.org/docs/current/static/
functions-window.html

43 / 80

https://www.postgresql.org/docs/current/static/functions-window.html
https://www.postgresql.org/docs/current/static/functions-window.html

LAG

SELECT x, LAG(x, 1) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | lag
---+--------
1 | (null)
1 | 1
2 | 1
2 | 2
3 | 2
3 | 3
4 | 3
4 | 4
5 | 4
5 | 5

44 / 80

LAG(2)

SELECT x, LAG(x, 2) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | lag
---+--------
1 | (null)
1 | (null)
2 | 1
2 | 1
3 | 2
3 | 2
4 | 3
4 | 3
5 | 4
5 | 4

45 / 80

LAG and LEAD

SELECT x, LAG(x, 2) OVER w, LEAD(x, 2) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | lag | lead
---+--------+--------
1 | (null) | 2
1 | (null) | 2
2 | 1 | 3
2 | 1 | 3
3 | 2 | 4
3 | 2 | 4
4 | 3 | 5
4 | 3 | 5
5 | 4 | (null)
5 | 4 | (null)

These operate on partitions. Defaults can be specified for
nonexistent rows.

46 / 80

FIRST_VALUE and LAST_VALUE

SELECT x, FIRST_VALUE(x) OVER w, LAST_VALUE(x) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | first_value | last_value
---+-------------+------------
1 | 1 | 1
1 | 1 | 1
2 | 1 | 2
2 | 1 | 2
3 | 1 | 3
3 | 1 | 3
4 | 1 | 4
4 | 1 | 4
5 | 1 | 5
5 | 1 | 5

These operate on window frames.

47 / 80

UNBOUNDED Window Frame

SELECT x, FIRST_VALUE(x) OVER w, LAST_VALUE(x) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ORDER BY x ROWS BETWEEN

UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING);

x | first_value | last_value
---+-------------+------------
1 | 1 | 5
1 | 1 | 5
2 | 1 | 5
2 | 1 | 5
3 | 1 | 5
3 | 1 | 5
4 | 1 | 5
4 | 1 | 5
5 | 1 | 5
5 | 1 | 5

48 / 80

NTH_VALUE

SELECT x, NTH_VALUE(x, 3) OVER w, NTH_VALUE(x, 7) OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | nth_value | nth_value
---+-----------+-----------
1 | (null) | (null)
1 | (null) | (null)
2 | 2 | (null)
2 | 2 | (null)
3 | 2 | (null)
3 | 2 | (null)
4 | 2 | 4
4 | 2 | 4
5 | 2 | 4
5 | 2 | 4

This operates on window frames.

49 / 80

Show Defaults

SELECT x, NTH_VALUE(x, 3) OVER w, NTH_VALUE(x, 7) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ORDER BY x RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | nth_value | nth_value
---+-----------+-----------
1 | (null) | (null)
1 | (null) | (null)
2 | 2 | (null)
2 | 2 | (null)
3 | 2 | (null)
3 | 2 | (null)
4 | 2 | 4
4 | 2 | 4
5 | 2 | 4
5 | 2 | 4

50 / 80

UNBOUNDED Window Frame

SELECT x, NTH_VALUE(x, 3) OVER w, NTH_VALUE(x, 7) OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ORDER BY x ROWS BETWEEN

UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING);

x | nth_value | nth_value
---+-----------+-----------
1 | 2 | 4
1 | 2 | 4
2 | 2 | 4
2 | 2 | 4
3 | 2 | 4
3 | 2 | 4
4 | 2 | 4
4 | 2 | 4
5 | 2 | 4
5 | 2 | 4

51 / 80

RANK and DENSE_RANK

SELECT x, RANK() OVER w, DENSE_RANK() OVER w
FROM generate_1_to_5_x2

WINDOW w AS ();

x | rank | dense_rank
---+------+------------
1 | 1 | 1
1 | 1 | 1
2 | 1 | 1
2 | 1 | 1
3 | 1 | 1
3 | 1 | 1
4 | 1 | 1
4 | 1 | 1
5 | 1 | 1
5 | 1 | 1

These operate on CURRENT ROW peers in the partition.

52 / 80

Show Defaults

SELECT x, RANK() OVER w, DENSE_RANK() OVER w
FROM generate_1_to_5_x2
WINDOW w AS (RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | rank | dense_rank
---+------+------------
1 | 1 | 1
1 | 1 | 1
2 | 1 | 1
2 | 1 | 1
3 | 1 | 1
3 | 1 | 1
4 | 1 | 1
4 | 1 | 1
5 | 1 | 1
5 | 1 | 1

53 / 80

ROWS

SELECT x, RANK() OVER w, DENSE_RANK() OVER w
FROM generate_1_to_5_x2
WINDOW w AS (ROWS BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW);

x | rank | dense_rank
---+------+------------
1 | 1 | 1
1 | 1 | 1
2 | 1 | 1
2 | 1 | 1
3 | 1 | 1
3 | 1 | 1
4 | 1 | 1
4 | 1 | 1
5 | 1 | 1
5 | 1 | 1

54 / 80

Operates on Peers, so Needs ORDER BY

SELECT x, RANK() OVER w, DENSE_RANK() OVER w
FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | rank | dense_rank
---+------+------------
1 | 1 | 1
1 | 1 | 1
2 | 3 | 2
2 | 3 | 2
3 | 5 | 3
3 | 5 | 3
4 | 7 | 4
4 | 7 | 4
5 | 9 | 5
5 | 9 | 5

55 / 80

PERCENT_RANK, CUME_DIST, NTILE

SELECT x, (PERCENT_RANK() OVER w)::numeric(10, 2),
(CUME_DIST() OVER w)::numeric(10, 2), NTILE(3) OVER w

FROM generate_1_to_5_x2

WINDOW w AS (ORDER BY x);

x | percent_rank | cume_dist | ntile
---+--------------+-----------+-------
1 | 0.00 | 0.20 | 1
1 | 0.00 | 0.20 | 1
2 | 0.22 | 0.40 | 1
2 | 0.22 | 0.40 | 1
3 | 0.44 | 0.60 | 2
3 | 0.44 | 0.60 | 2
4 | 0.67 | 0.80 | 2
4 | 0.67 | 0.80 | 3
5 | 0.89 | 1.00 | 3
5 | 0.89 | 1.00 | 3

PERCENT_RANK is ratio of rows less than current row, excluding
current row. CUME_DIST is ratio of rows <= current row. 56 / 80

PARTITION BY

SELECT int4(x > 2), x, RANK() OVER w, DENSE_RANK() OVER w
FROM generate_1_to_5_x2
WINDOW w AS (PARTITION BY x > 2 ORDER BY x)

ORDER BY 1,2;

int4 | x | rank | dense_rank
------+---+------+------------

0 | 1 | 1 | 1
0 | 1 | 1 | 1
0 | 2 | 3 | 2
0 | 2 | 3 | 2
1 | 3 | 1 | 1
1 | 3 | 1 | 1
1 | 4 | 3 | 2
1 | 4 | 3 | 2
1 | 5 | 5 | 3
1 | 5 | 5 | 3

57 / 80

PARTITION BY and Other Rank Functions

SELECT int4(x > 2), x, (PERCENT_RANK() OVER w)::numeric(10,2),
(CUME_DIST() OVER w)::numeric(10,2), NTILE(3) OVER w

FROM generate_1_to_5_x2
WINDOW w AS (PARTITION BY x > 2 ORDER BY x)

ORDER BY 1,2;

int4 | x | percent_rank | cume_dist | ntile
------+---+--------------+-----------+-------

0 | 1 | 0.00 | 0.50 | 1
0 | 1 | 0.00 | 0.50 | 1
0 | 2 | 0.67 | 1.00 | 2
0 | 2 | 0.67 | 1.00 | 3
1 | 3 | 0.00 | 0.33 | 1
1 | 3 | 0.00 | 0.33 | 1
1 | 4 | 0.40 | 0.67 | 2
1 | 4 | 0.40 | 0.67 | 2
1 | 5 | 0.80 | 1.00 | 3
1 | 5 | 0.80 | 1.00 | 3

58 / 80

5. Window Function Examples

https://www.flickr.com/photos/fishywang/

59 / 80

Create emp Table and Populate

CREATE TABLE emp (
id SERIAL,
name TEXT NOT NULL,
department TEXT,
salary NUMERIC(10, 2)

);

INSERT INTO emp (name, department, salary) VALUES
(’Andy’, ’Shipping’, 5400),
(’Betty’, ’Marketing’, 6300),
(’Tracy’, ’Shipping’, 4800),
(’Mike’, ’Marketing’, 7100),
(’Sandy’, ’Sales’, 5400),
(’James’, ’Shipping’, 6600),
(’Carol’, ’Sales’, 4600);

https://www.postgresql.org/docs/current/static/
tutorial-window.html

60 / 80

https://www.postgresql.org/docs/current/static/tutorial-window.html
https://www.postgresql.org/docs/current/static/tutorial-window.html

Emp Table

SELECT * FROM emp ORDER BY id;

id | name | department | salary
----+-------+------------+---------
1 | Andy | Shipping | 5400.00
2 | Betty | Marketing | 6300.00
3 | Tracy | Shipping | 4800.00
4 | Mike | Marketing | 7100.00
5 | Sandy | Sales | 5400.00
6 | James | Shipping | 6600.00
7 | Carol | Sales | 4600.00

61 / 80

Generic Aggregates

SELECT COUNT(*), SUM(salary),
round(AVG(salary), 2) AS avg

FROM emp;

count | sum | avg
-------+----------+---------

7 | 40200.00 | 5742.86

62 / 80

GROUP BY

SELECT department, COUNT(*), SUM(salary),
round(AVG(salary), 2) AS avg

FROM emp
GROUP BY department

ORDER BY department;

department | count | sum | avg
------------+-------+----------+---------
Marketing | 2 | 13400.00 | 6700.00
Sales | 2 | 10000.00 | 5000.00
Shipping | 3 | 16800.00 | 5600.00

63 / 80

ROLLUP

SELECT department, COUNT(*), SUM(salary),
round(AVG(salary), 2) AS avg

FROM emp
GROUP BY ROLLUP(department)

ORDER BY department;

department | count | sum | avg
------------+-------+----------+---------
Marketing | 2 | 13400.00 | 6700.00
Sales | 2 | 10000.00 | 5000.00
Shipping | 3 | 16800.00 | 5600.00
(null) | 7 | 40200.00 | 5742.86

64 / 80

Emp.name and Salary

SELECT name, salary
FROM emp

ORDER BY salary DESC;

name | salary
-------+---------
Mike | 7100.00
James | 6600.00
Betty | 6300.00
Andy | 5400.00
Sandy | 5400.00
Tracy | 4800.00
Carol | 4600.00

65 / 80

OVER

SELECT name, salary, SUM(salary) OVER ()
FROM emp

ORDER BY salary DESC;

name | salary | sum
-------+---------+----------
Mike | 7100.00 | 40200.00
James | 6600.00 | 40200.00
Betty | 6300.00 | 40200.00
Andy | 5400.00 | 40200.00
Sandy | 5400.00 | 40200.00
Tracy | 4800.00 | 40200.00
Carol | 4600.00 | 40200.00

66 / 80

Cumulative Totals Using ORDER BY

SELECT name, salary,
SUM(salary) OVER (ORDER BY salary DESC)

FROM emp

ORDER BY salary DESC;

name | salary | sum
-------+---------+----------
Mike | 7100.00 | 7100.00
James | 6600.00 | 13700.00
Betty | 6300.00 | 20000.00
Andy | 5400.00 | 30800.00
Sandy | 5400.00 | 30800.00
Tracy | 4800.00 | 35600.00
Carol | 4600.00 | 40200.00

Cumulative totals are often useful for time-series rows.

67 / 80

Window AVG

SELECT name, salary,
round(AVG(salary) OVER (), 2) AS avg

FROM emp

ORDER BY salary DESC;

name | salary | avg
-------+---------+---------
Mike | 7100.00 | 5742.86
James | 6600.00 | 5742.86
Betty | 6300.00 | 5742.86
Andy | 5400.00 | 5742.86
Sandy | 5400.00 | 5742.86
Tracy | 4800.00 | 5742.86
Carol | 4600.00 | 5742.86

68 / 80

Difference Compared to Average

SELECT name, salary,
round(AVG(salary) OVER (), 2) AS avg,
round(salary - AVG(salary) OVER (), 2) AS diff_avg

FROM emp

ORDER BY salary DESC;

name | salary | avg | diff_avg
-------+---------+---------+----------
Mike | 7100.00 | 5742.86 | 1357.14
James | 6600.00 | 5742.86 | 857.14
Betty | 6300.00 | 5742.86 | 557.14
Andy | 5400.00 | 5742.86 | -342.86
Sandy | 5400.00 | 5742.86 | -342.86
Tracy | 4800.00 | 5742.86 | -942.86
Carol | 4600.00 | 5742.86 | -1142.86

69 / 80

Compared to the Next Value

SELECT name, salary,
salary - LEAD(salary, 1) OVER

(ORDER BY salary DESC) AS diff_next
FROM emp

ORDER BY salary DESC;

name | salary | diff_next
-------+---------+-----------
Mike | 7100.00 | 500.00
James | 6600.00 | 300.00
Betty | 6300.00 | 900.00
Sandy | 5400.00 | 0.00
Andy | 5400.00 | 600.00
Tracy | 4800.00 | 200.00
Carol | 4600.00 | (null)

70 / 80

Compared to Lowest-Paid Employee

SELECT name, salary,
salary - LAST_VALUE(salary) OVER w AS more,
round((salary - LAST_VALUE(salary) OVER w) /
LAST_VALUE(salary) OVER w * 100) AS pct_more

FROM emp
WINDOW w AS (ORDER BY salary DESC ROWS BETWEEN

UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

ORDER BY salary DESC;

name | salary | more | pct_more
-------+---------+---------+----------
Mike | 7100.00 | 2500.00 | 54
James | 6600.00 | 2000.00 | 43
Betty | 6300.00 | 1700.00 | 37
Andy | 5400.00 | 800.00 | 17
Sandy | 5400.00 | 800.00 | 17
Tracy | 4800.00 | 200.00 | 4
Carol | 4600.00 | 0.00 | 0

71 / 80

RANK and DENSE_RANK

SELECT name, salary, RANK() OVER s, DENSE_RANK() OVER s
FROM emp
WINDOW s AS (ORDER BY salary DESC)

ORDER BY salary DESC;

name | salary | rank | dense_rank
-------+---------+------+------------
Mike | 7100.00 | 1 | 1
James | 6600.00 | 2 | 2
Betty | 6300.00 | 3 | 3
Andy | 5400.00 | 4 | 4
Sandy | 5400.00 | 4 | 4
Tracy | 4800.00 | 6 | 5
Carol | 4600.00 | 7 | 6

72 / 80

Departmental Average

SELECT name, department, salary,
round(AVG(salary) OVER

(PARTITION BY department), 2) AS avg,
round(salary - AVG(salary) OVER

(PARTITION BY department), 2) AS diff_avg
FROM emp

ORDER BY department, salary DESC;

name | department | salary | avg | diff_avg
-------+------------+---------+---------+----------
Mike | Marketing | 7100.00 | 6700.00 | 400.00
Betty | Marketing | 6300.00 | 6700.00 | -400.00
Sandy | Sales | 5400.00 | 5000.00 | 400.00
Carol | Sales | 4600.00 | 5000.00 | -400.00
James | Shipping | 6600.00 | 5600.00 | 1000.00
Andy | Shipping | 5400.00 | 5600.00 | -200.00
Tracy | Shipping | 4800.00 | 5600.00 | -800.00

73 / 80

WINDOW Clause

SELECT name, department, salary,
round(AVG(salary) OVER d, 2) AS avg,
round(salary - AVG(salary) OVER d, 2) AS diff_avg

FROM emp
WINDOW d AS (PARTITION BY department)

ORDER BY department, salary DESC;

name | department | salary | avg | diff_avg
-------+------------+---------+---------+----------
Mike | Marketing | 7100.00 | 6700.00 | 400.00
Betty | Marketing | 6300.00 | 6700.00 | -400.00
Sandy | Sales | 5400.00 | 5000.00 | 400.00
Carol | Sales | 4600.00 | 5000.00 | -400.00
James | Shipping | 6600.00 | 5600.00 | 1000.00
Andy | Shipping | 5400.00 | 5600.00 | -200.00
Tracy | Shipping | 4800.00 | 5600.00 | -800.00

74 / 80

Compared to Next Department Salary

SELECT name, department, salary,
salary - LEAD(salary, 1) OVER
(PARTITION BY department
ORDER BY salary DESC) AS diff_next

FROM emp

ORDER BY department, salary DESC;

name | department | salary | diff_next
-------+------------+---------+-----------
Mike | Marketing | 7100.00 | 800.00
Betty | Marketing | 6300.00 | (null)
Sandy | Sales | 5400.00 | 800.00
Carol | Sales | 4600.00 | (null)
James | Shipping | 6600.00 | 1200.00
Andy | Shipping | 5400.00 | 600.00
Tracy | Shipping | 4800.00 | (null)

75 / 80

Departmental and Global Ranks

SELECT name, department, salary, RANK() OVER s AS dept_rank,
RANK() OVER (ORDER BY salary DESC) AS global_rank

FROM emp
WINDOW s AS (PARTITION BY department ORDER BY salary DESC)

ORDER BY department, salary DESC;

name | department | salary | dept_rank | global_rank
-------+------------+---------+-----------+-------------
Mike | Marketing | 7100.00 | 1 | 1
Betty | Marketing | 6300.00 | 2 | 3
Sandy | Sales | 5400.00 | 1 | 4
Carol | Sales | 4600.00 | 2 | 7
James | Shipping | 6600.00 | 1 | 2
Andy | Shipping | 5400.00 | 2 | 4
Tracy | Shipping | 4800.00 | 3 | 6

76 / 80

6. Considerations

https://www.flickr.com/photos/10413717@N08/

77 / 80

Tips

◮ Do you want to split the set? (PARTITION BY creates multiple
partitions)

◮ Do you want an order in the partition? (use ORDER BY)

◮ How do you want to handle rows with the same ORDER BY

values?

◮ RANGE vs ROW

◮ RANK vs DENSE_RANK

◮ Do you need to define a window frame?

◮ Window functions can define their own partitions, ordering,
and window frames.

◮ Multiple window names can be defined in the WINDOW

clause.

◮ Pay attention to whether window functions operate on
frames or partitions.

78 / 80

Window Function Summary

Scope Type Function Description

frame

computation generic aggs. e.g. SUM, AVG

row access
FIRST_VALUE first frame value
LAST_VALUE last frame value
NTH_VALUE nth frame value

partition

row access
LAG row before current
LEAD row after current
ROW_NUMBER current row number

ranking

CUME_DIST cumulative distribution
DENSE_RANK rank without gaps
NTILE rank in n partitions
PERCENT_RANK percent rank
RANK rank with gaps

Window functions never process rows outside their partitions.
However, without PARTITION BY the partition is the entire set.

79 / 80

Conclusion

http://momjian.us/presentations https://www.flickr.com/photos/10318765@N03/

80 / 80

