
User, User, Who Is the User?

BRUCE MOMJIAN

This talk the many options available for Postgres user management.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: April 2025

1 / 49

The Cluster’s Original Superuser

When you create a PostgreSQL cluster with initdb, a single all-powerful superuser, called the bootstrap
user, is created. Typically this user is called postgres:

$ su - postgres
$ mkdir data
$ chmod 0700 data
$ initdb data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.
…
Success. You can now start the database server using:

pg_ctl -D data -l logfile start

$ pg_ctl -l server.log -D data start
waiting for server to start.... done
server started

2 / 49

The Cluster’s Original Superuser

$ psql postgres
psql (17devel)
Type "help" for help.
postgres=> SELECT CURRENT_USER;
current_user

postgres

postgres=> \du
List of roles

Role name | Attributes
-----------+--
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS

3 / 49

It Can Be any Operating System User

$ su - bruce
$ mkdir data
$ chmod 0700 data
$ initdb data
The files belonging to this database system will be owned by user "bruce".
This user must also own the server process.
…
Success. You can now start the database server using:

pg_ctl -D data -l logfile start

$ pg_ctl -l server.log -D data start
waiting for server to start.... done
server started

4 / 49

It Can Be any Operating System User

$ psql postgres # notice the database is still called "postgres"
SELECT CURRENT_USER;
current_user

bruce

\du
List of roles

Role name | Attributes
-----------+--
bruce | Superuser, Create role, Create DB, Replication, Bypass RLS

5 / 49

Users, Groups, Roles

While CREATE USER and CREATE GROUP commands exist, Postgres follows the SQL standard and focuses on
roles (and CREATE ROLE) for user management. Roles with LOGIN permissions are considered users, since
they can log in, and roles designated as NOLOGIN (the default) can be considered groups, though LOGIN

roles can also function as groups, e.g.:

-- CREATE USER defaults to LOGIN ability, while the others are NOLOGIN
CREATE USER demo_user;
CREATE GROUP demo_group;
CREATE ROLE demo_role;

\du demo_*
List of roles

Role name | Attributes
------------+--------------
demo_group | Cannot login
demo_role | Cannot login
demo_user |

6 / 49

Roles, not Rolls

https://www.flickr.com/photos/itshomemade/

7 / 49

CURRENT_USER and CURRENT_ROLE

\c - demo_user

SELECT CURRENT_USER;
current_user

demo_user

SELECT CURRENT_ROLE;
current_role

demo_user

8 / 49

Creating More Roles

\h create role
Command: CREATE ROLE
Description: define a new database role
Syntax:
CREATE ROLE name [[WITH] option [...]]
where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| BYPASSRLS | NOBYPASSRLS
| CONNECTION LIMIT connlimit
| [ENCRYPTED] PASSWORD ’password’ | PASSWORD NULL
| VALID UNTIL ’timestamp’
| IN ROLE role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| SYSID uid

URL: https://www.postgresql.org/docs/current/sql-createrole.html;
This presentation covers the red items.

9 / 49

Why Multiple Roles?

Relational databases allow multiple users to access the database at the same time with minimal need for user
adjustments, e.g., SELECT FOR UPDATE/SHARE, transaction isolation levels, DDL. While all users could log in
with the same user name, there are advantages of logging in using assigned names. There are also
advantages of creating non-login roles for permission managment:

1. Object ownership simplifies accounting

2. Database ownership allows control of schemas and extensions

3. Connection control

4. Simplified monitoring of session activity

5. User settings

6. User hierarchies

7. Object access control

8. Predefined roles

These articles by Ryan Booz also has helpful information: https://www.red-gate.com/simple-talk/databases/

postgresql/postgresql-basics-roles-and-privileges/ , https://www.red-gate.com/simple-talk/homepage/

postgresql-basics-object-ownership-and-default-privileges/.

10 / 49

https://www.red-gate.com/simple-talk/databases/postgresql/postgresql-basics-roles-and-privileges/
https://www.red-gate.com/simple-talk/databases/postgresql/postgresql-basics-roles-and-privileges/
https://www.red-gate.com/simple-talk/homepage/postgresql-basics-object-ownership-and-default-privileges/
https://www.red-gate.com/simple-talk/homepage/postgresql-basics-object-ownership-and-default-privileges/

1. Object Ownership Simplifies Accounting

\c - postgres
DO $$
DECLARE i iNTEGER;
BEGIN

FOR i IN 1..15 LOOP
EXECUTE format(’CREATE TABLE single_owner_%s (x INTEGER)’,

right(’0’ || i, 2));
END LOOP;

END;
$$ LANGUAGE plpgsql;

All the queries used in this presentation are available at https://momjian.us/main/writings/pgsql/user.sql;
execute with caution since this script creates global objects.

11 / 49

https://momjian.us/main/writings/pgsql/user.sql

Object Ownership Simplifies Accounting

\dt single_owner_*
List of relations

Schema | Name | Type | Owner
--------+-----------------+-------+----------
public | single_owner_01 | table | postgres
public | single_owner_02 | table | postgres
public | single_owner_03 | table | postgres
public | single_owner_04 | table | postgres
public | single_owner_05 | table | postgres
public | single_owner_06 | table | postgres
public | single_owner_07 | table | postgres
public | single_owner_08 | table | postgres
public | single_owner_09 | table | postgres
public | single_owner_10 | table | postgres
public | single_owner_11 | table | postgres
public | single_owner_12 | table | postgres
public | single_owner_13 | table | postgres
public | single_owner_14 | table | postgres
public | single_owner_15 | table | postgres

12 / 49

Object Ownership Simplifies Accounting

DO $$
DECLARE i iNTEGER;
BEGIN

FOR i IN 1..15 LOOP
EXECUTE format(’CREATE USER user_%s’,

right(’0’ || i, 2));
EXECUTE format(’CREATE TABLE multi_owner_%s (x INTEGER)’,

right(’0’ || i, 2));
EXECUTE format(’ALTER TABLE multi_owner_%s OWNER TO user_%s’,

right(’0’ || i, 2), right(’0’ || i, 2));
END LOOP;

END;
$$ LANGUAGE plpgsql;

The table owner can set permissions on the table and drop it.

13 / 49

Object Ownership Simplifies Accounting

\dt multi_owner_*
List of relations

Schema | Name | Type | Owner
--------+----------------+-------+---------
public | multi_owner_01 | table | user_01
public | multi_owner_02 | table | user_02
public | multi_owner_03 | table | user_03
public | multi_owner_04 | table | user_04
public | multi_owner_05 | table | user_05
public | multi_owner_06 | table | user_06
public | multi_owner_07 | table | user_07
public | multi_owner_08 | table | user_08
public | multi_owner_09 | table | user_09
public | multi_owner_10 | table | user_10
public | multi_owner_11 | table | user_11
public | multi_owner_12 | table | user_12
public | multi_owner_13 | table | user_13
public | multi_owner_14 | table | user_14
public | multi_owner_15 | table | user_15

14 / 49

2. Database Ownership Allows Control of Schemas and Extensions

CREATE DATABASE db_01 OWNER user_01;

\l db_01
List of databases

Name | Owner | Encoding | Locale Provider | Collate …
-------+---------+----------+-----------------+-------------…
db_01 | user_01 | UTF8 | libc | en_US.UTF-8 …

\c - user_01

GRANT ALL ON SCHEMA public TO PUBLIC;
WARNING: no privileges were granted for "public"

CREATE EXTENSION fuzzystrmatch;
ERROR: permission denied to create extension "fuzzystrmatch"
HINT: Must have CREATE privilege on current database to create this extension.

15 / 49

Database Ownership Allows Control of Schemas and Extensions

\c db_01 user_01

SELECT current_user;
current_user

user_01

-- Starting in PostgreSQL 15, by default the public schema only allows access
-- by the database owner.
GRANT ALL ON SCHEMA public TO PUBLIC;

CREATE EXTENSION fuzzystrmatch;

16 / 49

3. Connection Control

pg_hba.conf
TYPE DATABASE USER ADDRESS METHOD

For "sameuser", the database and user names must match
host sameuser all 172.20.0.0/16 scram-sha-256
host all user_01 172.20.4.18 scram-sha-256

\c - postgres

ALTER USER user_01 CONNECTION LIMIT 8;

17 / 49

4. Simplified Monitoring of Session Activity

\! psql --username user_01 -c ’SELECT pg_sleep(3)’ test &
\! psql --username user_02 -c ’SELECT pg_sleep(3)’ test &
\! psql --username user_03 -c ’SELECT pg_sleep(3)’ test &

-- give background processes time to start
SELECT pg_sleep(1);

SELECT usename, current_timestamp - query_start, query
FROM pg_stat_activity
WHERE usename IS NOT NULL AND

state = ’active’ AND
pid != pg_backend_pid();

Clients can also set the server variable application_name to improve session

monitoring; application_name can also be changed during sessions to reflect session

activity; see https://momjian.us/main/blogs/pgblog/2017.html#March_13_2017.
18 / 49

https://momjian.us/main/blogs/pgblog/2017.html#March_13_2017

Simplified Monitoring of Session Activity

usename | ?column? | query
---------+-----------------+--------------------
user_01 | 00:00:04.455078 | SELECT pg_sleep(3)
user_02 | 00:00:02.893516 | SELECT pg_sleep(3)
user_03 | 00:00:01.523733 | SELECT pg_sleep(3)

19 / 49

5. User Settings

ALTER USER user_01 SET work_mem = ’6MB’;
ALTER USER user_02 SET work_mem = ’8MB’;
ALTER USER user_03 SET work_mem = ’10MB’;

\c - user_01
SHOW work_mem;
work_mem

6MB

\c - user_02
SHOW work_mem;
work_mem

8MB

\c - user_03
SHOW work_mem;
work_mem

10MB

20 / 49

6. User Hierarchies

\c - postgres

CREATE ROLE user_01a IN ROLE user_01 LOGIN;

SELECT rolname, roleid::regrole AS "Is member of role"
FROM pg_roles, pg_auth_members
WHERE pg_roles.oid = member AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;

rolname | Is member of role
------------+----------------------
user_01a | user_01

21 / 49

First Value of Membership: SET ROLE

By default, roles can become member roles:

\c - user_01a

SELECT current_user;
current_user

user_01a

SET ROLE user_01;

SELECT current_user;
current_user

user_01

22 / 49

Second Value of Membership: INHERITANCE

By default, roles can also modify member-owned tables as though they were the owners of the tables,
without having to use SET ROLE to become member roles:

GRANT ALL ON SCHEMA public TO PUBLIC;

\c - user_01
CREATE TABLE drop_test(x INTEGER);

\c - user_01a
DROP TABLE drop_test;

23 / 49

Membership Without Inheritance

When a role is added as a member with NOINHERIT, SET ROLE must be used to obtain the privileges of
member roles:

\c - postgres

CREATE ROLE user_01b IN ROLE user_01 LOGIN NOINHERIT;

\c - user_01
CREATE TABLE drop_test1 (x INTEGER);

\c - user_01b
DROP TABLE drop_test1;
ERROR: must be owner of table drop_test1

SET ROLE user_01;
DROP TABLE drop_test1;

Prior to PostgreSQL 16, inheritance was only a role attribute, meaning that roles it was a member of were
either all inherited or not inherited; see http://rhaas.blogspot.com/2023/01/

surviving-without-superuser-coming-to.html for a summary of Postgres 16 changes.
24 / 49

http://rhaas.blogspot.com/2023/01/surviving-without-superuser-coming-to.html
http://rhaas.blogspot.com/2023/01/surviving-without-superuser-coming-to.html

Membership Without Inheritance

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;

rolname | Is member of role | inherit_option
------------+----------------------+----------------
user_01a | user_01 | t
user_01b | user_01 | f

25 / 49

Removing Inheritance After Membership

Inheritance can be removed after the role is created:

\c - postgres

REVOKE INHERIT OPTION FOR user_01 FROM user_01a;

\c - user_01
CREATE TABLE drop_test2 (x INTEGER);

\c - user_01a
DROP TABLE drop_test2;
ERROR: must be owner of table drop_test2

SET ROLE user_01;
DROP TABLE drop_test2;

26 / 49

Removing Inheritance After Membership

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;

rolname | Is member of role | inherit_option
------------+----------------------+----------------
user_01a | user_01 | f
user_01b | user_01 | f

27 / 49

Membership Without SET ROLE

This role now has no SET ROLE permission:

\c - postgres

REVOKE SET OPTION FOR user_01 FROM user_01a;

\c - user_01
CREATE TABLE drop_test3 (x INTEGER);

\c - user_01a
DROP TABLE drop_test3;
ERROR: must be owner of table drop_test3

SET ROLE user_01;
ERROR: permission denied to set role "user_01"

Prior to PostgreSQL 16, SET ROLE could not be disabled for members.
28 / 49

Membership Without SET ROLE

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option, set_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;
rolname | Is member of role | inherit_option | set_option
----------+-------------------+----------------+------------
user_01a | user_01 | f | f
user_01b | user_01 | f | t

29 / 49

Membership Can Be Added After Role Creation

\c - postgres

GRANT user_01 TO user_02;
GRANT user_01 TO user_03 WITH INHERIT FALSE;

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option, set_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;
rolname | Is member of role | inherit_option | set_option
----------+-------------------+----------------+------------
user_01a | user_01 | f | f
user_01b | user_01 | f | t
user_02 | user_01 | t | t
user_03 | user_01 | f | t

30 / 49

Membership Can Be Removed

REVOKE user_01 FROM user_03;

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option, set_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;
rolname | Is member of role | inherit_option | set_option
----------+-------------------+----------------+------------
user_01a | user_01 | f | f
user_01b | user_01 | f | t
user_02 | user_01 | t | t

31 / 49

ADMIN Allows Membership Control

The ADMIN membership attribute allows membership control of other roles:

\c - postgres

GRANT user_01 TO user_01a WITH ADMIN TRUE;

\c - user_01a
GRANT user_01 TO user_04;

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option, set_option, admin_option
FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;
rolname | Is member of role | inherit_option | set_option | admin_option
----------+-------------------+----------------+------------+--------------
user_01a | user_01 | f | f | t
user_01b | user_01 | f | t | f
user_02 | user_01 | t | t | f
user_04 | user_01 | t | t | f 32 / 49

ADMIN Allows Membership Control

-- This was added to psql in PostgreSQL 16.
\drg

List of role grants
Role name | Member of | Options | Grantor
-----------+-----------+--------------+----------
user_01a | user_01 | ADMIN | postgres
user_01b | user_01 | SET | postgres
user_02 | user_01 | INHERIT, SET | postgres
user_04 | user_01 | INHERIT, SET | user_01a

33 / 49

GRANT Allows Membership Attribute Changes

-- This was added in PostgreSQL 16.
\c - postgres

\drg user_01a
List of role grants

Role name | Member of | Options | Grantor
-----------+-----------+---------+----------
user_01a | user_01 | ADMIN | postgres

GRANT user_01 TO user_01a WITH INHERIT TRUE, SET TRUE, ADMIN FALSE;

\drg user_01a
List of role grants

Role name | Member of | Options | Grantor
-----------+-----------+--------------+----------
user_01a | user_01 | INHERIT, SET | postgres

34 / 49

Multiple Membership

This role will have three members, and will be a member of three roles:

CREATE ROLE user_20 ROLE user_07, user_08, user_09 IN ROLE user_11, user_12, user_13;

SELECT rolname, roleid::regrole AS "Is member of role", inherit_option,
set_option, admin_option

FROM pg_roles, pg_auth_members
WHERE member = pg_roles.oid AND

rolname NOT LIKE ’pg_%’
ORDER BY 1, 2;

35 / 49

Multiple Membership

rolname | Is member of role | inherit_option | set_option | admin_option
----------+-------------------+----------------+------------+--------------
user_01a | user_01 | f | f | t
user_01b | user_01 | f | t | f
user_02 | user_01 | t | t | f
user_04 | user_01 | t | t | f
user_07 | user_20 | t | t | f
user_08 | user_20 | t | t | f
user_09 | user_20 | t | t | f
user_20 | user_11 | t | t | f
user_20 | user_12 | t | t | f
user_20 | user_13 | t | t | f

36 / 49

The Hierarchy

user_20

user_08 user_09

user_11 user_12 user_13

user_07
37 / 49

Membership Chaining

Membership can create a chain of privileges:

\c - user_11

CREATE TABLE drop_test4 (x INTEGER);

\c - user_07

-- user_07 is a member of user_20, and user_10 is a member of user_11
DROP TABLE drop_test4;

SET ROLE user_11;

38 / 49

7. Object Access Control

In most cases, when a role creates an object, only the owner role can view or modify the object; the objects
include

• Databases
• Domains
• Foreign data wrappers
• Foreign servers
• Functions
• Languages
• Large objects
• Procedures
• Schemas
• Sequences
• Server parameters (added in PostgreSQL 15)
• Tables
• Tablespaces
• Types
• View

Object ownership can be modified with ALTER; for more details see https://www.postgresql.org/docs/

current/ddl-priv.html.
39 / 49

https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/ddl-priv.html

Table Permissions

As an example, here are the GRANT operations that can be performed on tables:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
[, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
ON [TABLE] table_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION];

40 / 49

Granting Table Permissions

\c - user_01

CREATE TABLE grant_test (x INTEGER);

\dp
Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
--------+------------+-------+-------------------+-------------------+----------
public | drop_test3 | table | (null) | |
public | grant_test | table | (null) | |

GRANT SELECT ON TABLE grant_test TO user_02;

41 / 49

Granting Table Permissions

\dp
Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
--------+------------+-------+-------------------------+-------------------+----------
public | drop_test3 | table | (null) | |
public | grant_test | table | user_01=arwdDxt/user_01+| |

| | | user_02=r/user_01 | |

This blog entry explains the letters: https://momjian.us/main/blogs/pgblog/2019.html#February_4_2019.
42 / 49

https://momjian.us/main/blogs/pgblog/2019.html#February_4_2019

Permission Letters

SELECT relacl FROM pg_class where relname = ’grant_test’;
relacl

{user_01=arwdDxt/user_01,user_02=r/user_01}

SELECT (aclexplode(relacl)).grantee::regrole,
(aclexplode(relacl)).privilege_type

FROM pg_class
WHERE relname = ’grant_test’
ORDER BY 1, 2;
grantee | privilege_type
---------+----------------
user_01 | DELETE
user_01 | INSERT
user_01 | REFERENCES
user_01 | SELECT
user_01 | TRIGGER
user_01 | TRUNCATE
user_01 | UPDATE
user_02 | SELECT 43 / 49

Permission Aggregation

WITH acls AS (
SELECT (aclexplode(relacl)).grantee::regrole AS rolename,

(aclexplode(relacl)).privilege_type AS acl
FROM pg_class
WHERE relname = ’grant_test’

) SELECT rolename, array_agg(acl)
FROM acls
GROUP BY 1
ORDER BY 1, 2;
rolename | array_agg
----------+---
user_01 | {INSERT,SELECT,UPDATE,DELETE,TRUNCATE,REFERENCES,TRIGGER}
user_02 | {SELECT}

This blog entry explains this aggregation: https://momjian.us/main/blogs/pgblog/2019.html#February_6_2019.
44 / 49

https://momjian.us/main/blogs/pgblog/2019.html#February_6_2019

Using Information_schema

SELECT grantee,
array_agg(privilege_type)

FROM information_schema.role_table_grants
WHERE table_name = ’grant_test’
GROUP BY grantee
ORDER BY 1,2;
grantee | array_agg
---------+---
user_01 | {INSERT,SELECT,UPDATE,DELETE,TRUNCATE,REFERENCES,TRIGGER}
user_02 | {SELECT}

The information_schema contains views for other object types.
45 / 49

Objects With Default Public Access

Most objects have permissions only for the object owner, and subsequent GRANT statements can be used to
open permissions. However, the following objects allow public access by default:

• Connection and temporary table creation in databases

• Execution of functions and procedures

• Usage of languages

• Usage of data type and domains

When creating such objects, if public access is not desired, create the object and modify its access
permissions in a single transaction block, as outlined at https://www.postgresql.org/docs/current/
sql-createfunction.html.

46 / 49

https://www.postgresql.org/docs/current/sql-createfunction.html
https://www.postgresql.org/docs/current/sql-createfunction.html

8. Predefined Roles

As mentioned before, superuser roles are all-powerful, and sometimes such power is needed. However,
often less powerful privileges are sufficient. To allow roles to be assigned some superuser permissions, but
not others, predefined non-login roles have been created:

\du pg_*
List of roles

Role name | Attributes
-----------------------------+--------------
pg_checkpoint | Cannot login
pg_create_subscription | Cannot login
pg_database_owner | Cannot login
pg_execute_server_program | Cannot login
pg_monitor | Cannot login
pg_read_all_data | Cannot login
pg_read_all_settings | Cannot login
pg_read_all_stats | Cannot login
pg_read_server_files | Cannot login
pg_signal_backend | Cannot login
pg_stat_scan_tables | Cannot login
pg_use_reserved_connections | Cannot login
pg_write_all_data | Cannot login
pg_write_server_files | Cannot login

47 / 49

Predefined Role Membership

As mentioned before, superuser roles are all-powerful, and sometimes such power is needed. However,
often less powerful privileges are sufficient. To allow roles to be assigned some superuser permissions, but
not others, predefined non-login roles have been created:

\c - user_01

SELECT * FROM pg_authid;
ERROR: permission denied for table pg_authid

\c - postgres
GRANT pg_read_all_data TO user_01;

\c - user_01
SELECT * FROM pg_authid;

oid | rolname | rolsuper …
-------+-----------------------------+----------…

10 | postgres | t …
6171 | pg_database_owner | f …
6181 | pg_read_all_data | f …
6182 | pg_write_all_data | f …

48 / 49

Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/26424952@N00/

49 / 49

