
Get to know

XYZ, ABC

Agenda (must be updated for the final set)

1. Background
2. Practical use of PostgreSQL
3. Features
4. PostgreSQL behind the scenes
5. Replication
6. Use of PostgreSQL from various languages
7. Third party tools
8. How to get started

Background

What is PostgreSQL?

PostgreSQL is an:
advancaed
freely available open source
relational database management server (RDBMS)

Supports much of SQL including advanced features:
Complex queries, including subselects
Foreign keys
Triggers
Views
Transactional integrity (ACID)
Multiversion concurrency control (MVCC)

BSD-style license (”do what you want, but don’t bother us”)

Where does it come from?

From INGRES to POSTGRES: 1977-1994
Michael Stonebraker, professor at UC @ Berkeley from 1971

Developed INGRES from 1977
Proof-of-concept for relational databases
Established the company Ingres in 1980
Bought by Computer Associates in 1994

Continued research on POSTGRES from 1986
Further development of the concepts in INGRES with a focus on
object orientation and the query language Quel
The code base of INGRES was not used as a basis for POSTGRES
Commercialized as Illustra (bought by Informix, bought by IBM)

From POSTGRES to PostgreSQL: 1994-1996
Support for SQL was added in 1994
Released as Postgres95 in 1995
Re-released as PostgreSQL 6.0 in 1996
Establishment of the PostgreSQL Global Development Team

Michael StonebrakerMichael Stonebraker

1977-1985 INGRES
1986-1994POSTGRES
1994-1995 Postgres95
1996- PostgreSQL

1977-1985 INGRES
1986-1994POSTGRES
1994-1995 Postgres95
1996- PostgreSQL

PostgreSQL Global Development Team

Thomas Lockhart
Jolly Chen
Vadim Mikheev
Jan Wieck
Andrew Yu
Tom Lane
Bruce Momjian
Marc Fournier

PostgreSQL development

Core team (a la FreeBSD)

Source code in CVS (a la FreeBSD)

http://developer.postgresql.org/
Developer-specific mailing lists
Centralized TODO list
Developer's FAQ
Beta-versions of PostgreSQL + documentation
Presentations
Webinterface to CVS
Patches awaiting testing
Listing of reported bugs

Release history

20051996 1997 1998 1999 2000 2001 2002 2003 2004

6.0 8.07.0 7.16.5
6.3
6.4

6.1
6.2

1.09
7.4

7.2
7.3

”Crash”
Adherence to the
SQL standard

Improved performance
Improved administration

and maintenance
24/7-ready

178’LoC 508’383’

7.4.0 2003-11-17
7.4.1 2003-12-22
7.4.2 2004-03-08
7.4.3 2004-06-14
7.4.4 2004-08-16
7.4.5 2004-08-18
7.4.6 2004-10-22

Dot releases does not normally
require reloading of databases

Practical use
of PostgreSQL

Installation of PostgreSQL

FreeBSD:
cd /usr/ports/databases/postgresql80-server
sudo make install distclean
cd /usr/ports/databases/postgresql80-client
sudo make install distclean
cd /usr/ports/databases/postgresql-docs
sudo make install distclean

==

To initialize the database, you should run initdb as the "pgsql" user.
Example:

su -l pgsql -c initdb

You can then start PostgreSQL by running:

/usr/local/etc/rc.d/010.pgsql.sh start

For postmaster settings, see ~pgsql/data/postgresql.conf
For more tips, read ~pgsql/post-install-notes
==

Initializing PostgreSQL
pgsql@home> initdb
The files belonging to this database system will be owned by user "pgsql"
This user must also own the server process.
The database cluster will be initialized with locale C.
creating directory /usr/local/pgsql/data... ok
creating directory /usr/local/pgsql/data/base... ok
creating directory /usr/local/pgsql/data/global... ok
creating directory /usr/local/pgsql/data/pg_xlog... ok
creating directory /usr/local/pgsql/data/pg_clog... ok
creating template1 database in /usr/local/pgsql/data/base/1... ok
creating configuration files... ok
initializing pg_shadow... ok
enabling unlimited row size for system tables... ok
initializing pg_depend... ok
creating system views... ok
loading pg_description... ok
creating conversions... ok
setting privileges on built-in objects... ok
creating information schema... ok
vacuuming database template1... ok
copying template1 to template0... ok
Success. You can now start the database server using:
/usr/local/pgsql//bin/postmaster -D /usr/local/pgsql/data
or
/usr/local/pgsql//bin/pg_ctl -D /usr/local/pgsql/data -l logfile start

Establishing a database
oddbjorn@home ~> createdb demo
createdb: database creation failed: ERROR: permission denied to create database
oddbjorn@home ~> su - pgsql

pgsql@home ~> createdb demo
CREATE DATABASE

pgsql@home ~> psql demo
Welcome to psql 7.4.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

demo=# grant all on database demo to oddbjorn;
GRANT

oddbjorn@home ~> psql demo
Welcome to psql 7.4.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

demo=>

psql: The primary CLI client
Usage:
psql [OPTIONS]... [DBNAME [USERNAME]]

General options:
-d DBNAME specify database name to connect to (default: "oddbjorn")
-c COMMAND run only single command (SQL or internal) and exit
-f FILENAME execute commands from file, then exit
-l list available databases, then exit
-v NAME=VALUE set psql variable NAME to VALUE
-X do not read startup file (~/.psqlrc)
--help show this help, then exit
--version output version information, then exit

Input and output options:
-a echo all input from script
-e echo commands sent to server
-E display queries that internal commands generate
-q run quietly (no messages, only query output)
-o FILENAME send query results to file (or |pipe)
-n disable enhanced command line editing (readline)
-s single-step mode (confirm each query)
-S single-line mode (end of line terminates SQL command)

Output format options:
-A unaligned table output mode (-P format=unaligned)
-H HTML table output mode (-P format=html)
-t print rows only (-P tuples_only)
-T TEXT set HTML table tag attributes (width, border) (-P tableattr=)
-x turn on expanded table output (-P expanded)
-P VAR[=ARG] set printing option VAR to ARG (see \pset command)
-F STRING set field separator (default: "|") (-P fieldsep=)
-R STRING set record separator (default: newline) (-P recordsep=)

Connection options:
-h HOSTNAME database server host or socket directory (default: "local socket")
-p PORT database server port (default: "5432")
-U NAME database user name (default: "oddbjorn")
-W prompt for password (should happen automatically)

psql: \?: Listing the internal commands

General
\c[onnect] [DBNAME|- [USER]]

connect to new database
\cd [DIR] change the current working directory
\copyright show PostgreSQL usage and distribution terms
\encoding [ENCODING]

show or set client encoding
\h [NAME] help on syntax of SQL commands, * for all commands
\q quit psql
\set [NAME [VALUE]]

set internal variable, or list all if no parameters
\timing toggle timing of commands (currently off)
\unset NAME unset (delete) internal variable
\! [COMMAND] execute command in shell or start interactive shell

Query Buffer
\e [FILE] edit the query buffer (or file) with external editor
\g [FILE] send query buffer to server (and results to file or

|pipe)
\p show the contents of the query buffer
\r reset (clear) the query buffer
\s [FILE] display history or save it to file
\w [FILE] write query buffer to file

Input/Output
\echo [STRING] write string to standard output
\i FILE execute commands from file
\o [FILE] send all query results to file or |pipe
\qecho [STRING]

write string to query output stream (see \o)

Informational
\d [NAME] describe table, index, sequence, or view
\d{t|i|s|v|S} [PATTERN] (add "+" for more detail)

list tables/indexes/sequences/views/system tables
\da [PATTERN] list aggregate functions
\dc [PATTERN] list conversions
\dC list casts
\dd [PATTERN] show comment for object
\dD [PATTERN] list domains
\df [PATTERN] list functions (add "+" for more detail)
\dn [PATTERN] list schemas
\do [NAME] list operators
\dl list large objects, same as \lo_list
\dp [PATTERN] list table access privileges
\dT [PATTERN] list data types (add "+" for more detail)
\du [PATTERN] list users
\l list all databases (add "+" for more detail)
\z [PATTERN] list table access privileges (same as \dp)

Formatting
\a toggle between unaligned and aligned output mode
\C [STRING] set table title, or unset if none
\f [STRING] show or set field separator for unaligned query output
\H toggle HTML output mode (currently off)
\pset NAME [VALUE]

set table output option
(NAME := {format|border|expanded|fieldsep|footer|null|
recordsep|tuples_only|title|tableattr|pager})

\t show only rows (currently off)
\T [STRING] set HTML <table> tag attributes, or unset if none
\x toggle expanded output (currently off)

Copy, Large Object
\copy ... perform SQL COPY with data stream to the client host
\lo_export
\lo_import
\lo_list
\lo_unlink large object operations

psql: \d: Describe

\d [NAME] describe table, index, sequence, or view

\d{t|i|s|v|S} [PATTERN] (add "+" for more detail)
list tables/indexes/sequences/views/system tables

\da [PATTERN] list aggregate functions
\dc [PATTERN] list conversions
\dC list casts
\dd [PATTERN] show comment for object
\dD [PATTERN] list domains
\df [PATTERN] list functions (add "+" for more detail)
\dn [PATTERN] list schemas
\do [NAME] list operators
\dl list large objects, same as \lo_list
\dp [PATTERN] list table access privileges
\dT [PATTERN] list data types (add "+" for more detail)
\du [PATTERN] list users
\l list all databases (add "+" for more detail)
\z [PATTERN] list table access privileges (same as \dp)

psql: Example of \d in use

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text
testdb->);
CREATE TABLE

testdb=> \d my_table
Table "my_table"

Attribute | Type | Modifier
-----------+---------+--------------------
first | integer | not null default 0
second | text |

psql: \h: SQL-help
ABORT CREATE LANGUAGE DROP TYPE
ALTER AGGREGATE CREATE OPERATOR CLASS DROP USER
ALTER CONVERSION CREATE OPERATOR DROP VIEW
ALTER DATABASE CREATE RULE END
ALTER DOMAIN CREATE SCHEMA EXECUTE
ALTER FUNCTION CREATE SEQUENCE EXPLAIN
ALTER GROUP CREATE TABLE FETCH
ALTER LANGUAGE CREATE TABLE AS GRANT
ALTER OPERATOR CLASS CREATE TRIGGER INSERT
ALTER SCHEMA CREATE TYPE LISTEN
ALTER SEQUENCE CREATE USER LOAD
ALTER TABLE CREATE VIEW LOCK
ALTER TRIGGER DEALLOCATE MOVE
ALTER USER DECLARE NOTIFY
ANALYZE DELETE PREPARE
BEGIN DROP AGGREGATE REINDEX
CHECKPOINT DROP CAST RESET
CLOSE DROP CONVERSION REVOKE
CLUSTER DROP DATABASE ROLLBACK
COMMENT DROP DOMAIN SELECT
COMMIT DROP FUNCTION SELECT INTO
COPY DROP GROUP SET
CREATE AGGREGATE DROP INDEX SET CONSTRAINTS
CREATE CAST DROP LANGUAGE SET SESSION AUTHORIZATION
CREATE CONSTRAINT TRIGGER DROP OPERATOR CLASS SET TRANSACTION
CREATE CONVERSION DROP OPERATOR SHOW
CREATE DATABASE DROP RULE START TRANSACTION
CREATE DOMAIN DROP SCHEMA TRUNCATE
CREATE FUNCTION DROP SEQUENCE UNLISTEN
CREATE GROUP DROP TABLE UPDATE
CREATE INDEX DROP TRIGGER VACUUM

CREATE / ALTER / DROP of objects

AGGREGATE
CAST
CONSTRAINT
CONVERSION
DATABASE
DOMAIN
FUNCTION
GROUP
LANGUAGE

OPERATOR
RULE
SCHEMA
SEQUENCE
TABLE
TYPE
TRIGGER
USER
VIEW

SQL-transactions and maintenance

Inserting, updating and deleting data
INSERT / UPDATE / DELETE
COPY
TRUNCATE

Queries
SELECT
SELECT INTO

Permissions
GRANT / REVOKE

Maintenance and optimization
EXPLAIN
ANALYZE
VACUUM

SQL: Miscellaneous
Transactional support

BEGIN / ABORT / ROLLBACK / CHECKPOINT / COMMIT
SET TRANSACTION / START TRANSACTION / SET CONSTRAINTS

Cursors
DECLARE / FETCH / MOVE / CLOSE

Triggers
LISTEN / NOTIFY / UNLISTEN

Parameters
SHOW / SET / RESET

Miscellaneous
PREPARE / EXECUTE / DEALLOCATE
LOAD
LOCK
COMMENT
REINDEX
CLUSTER
SET SESSION AUTHORIZATION

psql: Example of \h select
testdb=> \h select
Command: SELECT
Description: retrieve rows from a table or view
Syntax:
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

* | expression [AS output_name] [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]
[FOR UPDATE [OF table_name [, ...]]]

where from_item can be one of:

[ONLY] table_name [*] [[AS] alias [(column_alias [, ...]
)]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias [(
column_alias [, ...] | column_definition [, ...])]
function_name ([argument [, ...]]) AS (column_definition [,
...])
from_item [NATURAL] join_type from_item [ON join_condition |
USING (join_column [, ...])]

psql: Miscellaneous features

Batch use of psql:
psql –f file.sql database
program | psql –f - database

Support for readline

Built-in support for timing queries:
db=> \timing
Timing is on.
net=> select count(*) from table;
count

25523
(1 row)
Time: 52.729 ms

Choose output format
HTML|format|border|expanded|fieldsep|footer|null
recordsep|tuples_only|title|tableattr|pager

psql: Bulk copy of data: \COPY

Loads TSV data from files in one transaction
Advantage: fast
Disadvantage: if one row isn’t accepted, all the rows

from the file are thrown away

\copy tablename from ’filename’

psql also supports loading of large objects (lo_*)

pgAdmin III

Freely available graphical
administration application for
PostgreSQL

Runs on:
Linux,
FreeBSD &
Windows

Version 1.2 supports 8.0

pgAdmin III: Screenshots

phpPgAdmin

Pgbash: PostgreSQL access from the shell
home ~> pgbash
Welcome to Pgbash version 7.3 (bash-2.05a.0(1)-release)

Type '?' for HELP.
Type 'connect to DB;' before executing SQL.
Type 'SQL;' to execute SQL.
Type 'exit' or 'Ctrl+D' to terminate Pgbash.

home ~> CONNECT TO testdb;

home ~> SELECT * FROM iso3166 LIMIT 10;
cc | country

----+---------------------
AF | Afghanistan
AL | Albania
DZ | Algeria
AS | American Samoa
AD | Andorra
AO | Angola
AI | Anguilla
AQ | Antarctica
AG | Antigua and Barbuda
AR | Argentina

(10 rows)

Miscellaneous commands

Administrative tools
pg_ctl – start, stop eller restart av server
pg_config – dumper config-informasjon

Dump & restore
pg_dump og pg_dumpall

Dumping one or all databases, respectively
Choose everything / schema only / data only
Output:

plain-text SQL,
tar,
custom archive format with compression

pg_restore
Loads input from the non-plaintext outputs of pg_dump
(psql loads the plaintext variants)

Contrib
Dedicated contrib distribution with extensions and utilities:

dblink - Allows remote query execution
dbmirror - Replication server
dbsize - Reports database and table disk space
fuzzystrmatch - Levenshtein, metaphone, and soundex fuzzy string
matching
isbn_issn - PostgreSQL type extensions for ISBN and ISSN
mysql - Utility to convert MySQL schema dumps to PostgreSQL
oracle - Converts Oracle database schema to PostgreSQL
pg_autovacuum - Automatically performs vacuum
pg_upgrade - Upgrade from previous PostgreSQL version
pgbench - TPC-B like benchmarking tool
pgcrypto - Cryptographic functions
reindexdb - Reindexes a database
apache_logging - Getting Apache to log to PostgreSQL
tsearch2 - Full-text-index support using GiST
xml2 - Storing XML in PostgreSQL

PostgreSQL features

Overall features

Freely available; no license costs to worry about

Proven robustness over many years

Designed to require minimal administration

Simple, but good administrative tools (both CLI & GUI-based)

Portable, runs on”all” relevant plattforms

Extensible, with a well documented API for additional features

A number of alternatives for high availability and replication

Very good ”de facto” support
With the option of commercial support from many companies

Features

SQL-støtte
Good ANSI SQL-support
Rules
Views 5.0
Triggers 5.1 (rudimentary)
Cursors 5.0
Unicode
Sequences 5.1?
Inheritance ?
Outer Joins
Sub-selects
Support for UNION
(ALL/EXCEPT)

Extensible
Data types
Functions
Operators

Database
Fully ACID compliance
Foreign keys (referential integrity)
Better than row-level locking (MVCC)
Functional and partial indices

Development
Stored procedures 5.0
Procedural languages
Native interfaces for ODBC,
JDBC, C, C++, PHP, Perl, TCL,
ECPG, Python, and Ruby
Open and documented API

Security
Native SSL support
Native Kerberos authentication

The numbers in red show when mySQL is supposed to get similar features.

Compliance with the SQL standard
The SQL standard

ISO/IEC 9075 “Database Language SQL”
Last revision in 2003, aka ISO/IEC 9075:2003 or just SQL:2003
Earlier versions was SQL:1999 and SQL-92, but SQL:2003
supercedes both

The requirements are defined as individual features:
“Core”, which all SQL implementations must implement
the rest is optional, grouped in”packages”

No known RDBMS system today fully supports Core SQL:2003

PostgreSQL versus SQL:2003
PostgreSQL is trying to adhere to there standard where possible,
without destroying backward compatibility and common sense
Much of SQL:2003 is supported, but sometimes with a slightly
different syntax
Further compliance is continually implemented
Of 255 requirements are currently 58%

Features to ensure data integrity: ACID

Atomic
A transaction is inseperable– ”all or nothing”

Consistent
A transaction shall bring the database from one
consistent state to another consistent state, even
if its not necessarily consistent during the
transaction.

Isolated
Transactions are not affected by changes done by
concurrent transactions

Durable
When a transaction is COMMITed, the changes
are permanent, even after a crash

MultiVersion Concurrency Control (MVCC)

Traditional row-locking locks the row for the duration of an
update. MVCC, on the other hand, maintains versions of
each row. This enable:

1. Every transaction see a snapshot of the database as it was when the
transaction started, regardless of what concurrent transactions
might be doing

2. Reading does not block writing
3. Writing does not block reading
4. Writing only blocks writing when updating the same row

Another advantage of MVCC is the possibility of consistent
hot backups

See “Transaction Processing in PostgreSQL” by Tom Lane

Transactions
Tightly coupled to ACID/MVCC is the notion of
transactions:

A transaction groups several operations to one atomic
operation
The result of the transaction is ’all or nothing’

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts
WHERE name = ’Alice’);

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = ’Bob’);

COMMIT;

On
e

tr
an

sa
ct

io
n

Views
A view masks a query behind a virtual table. Advantages:

A consistent interface to the data, even if the tables behind it changes
Can masks the details of the tables
Queries against views can reduce complexity
Can improve security by giving selective access to data

Merging selected columns from two tables:
CREATE VIEW myview AS

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

PostgreSQL does not currently support materialized views

Schemas

Schemas provide a means to separate the namespace
within a database, almost like directories in a file
hierarchy (but just one level). Provides the following
possibilities:

Logical grouping of database objects
Separate various users from each other
Avoiding name collisions in large databases

Does not affect the permissions

CREATE SCHEMA blug;
CREATE TABLE blug.tabell (..);
SHOW search_path;
DROP SCHEMA blug [CASCADE];

Constraints

The data type of a column define which kind
of data that’s acceptable; constraints give
further flexibility in quality checking the data

PostgreSQL supports five types of constraints
Check - price numeric CHECK (price > 0)

Not NULL - product_no integer NOT NULL

Uniqueness - product_no integer UNIQUE

Primary keys - Unique+!NULL: PRIMARY KEY (a,
c)

Foreign keys - product_no integer REFERENCES

products (product_no),

Triggers

A trigger can be defined to either execute before or
after an INSERT, UPDATE or DELETE, either per
statement or per modified row

Example:

CREATE TRIGGER if_film_exists
BEFORE DELETE OR UPDATE ON distributors
FOR EACH ROW
EXECUTE PROCEDURE check_foreign_key

(1, 'CASCADE', 'did', 'films', 'did');

The trigger function must be defined in one of the
available procedural languages

Inheritance
Inheritance in PostgreSQL is roughly the same concept as
inheritance in object-oriented languages like C++ and Java

A table inheriting another table get all the columns from the
parent table

Possibility of limiting queries to only the parent table:
SELECT a, b from ONLY tableA

Supported by UPDATE, DELETE and other statements

Not currently fully integrated with unique and foreign key
constraints

Example of inheritance
CREATE TABLE capitals (

name text,
population real,
altitude int, -- (in ft)
state char(2)

);
CREATE TABLE non_capitals (

name text,
population real,
altitude int -- (in ft)

);
CREATE VIEW cities AS

SELECT name, population, altitude FROM capitals
UNION

SELECT name, population, altitude FROM non_capitals;

CREATE TABLE cities (
name text,
population real,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

Cursors

Cursorer give the ability of ’chunking’ the result set,
thus making it easier to process.

This can be used to avoid resource problems in the
client, and supports returning a reference to a
cursor instead of the complete result set

Sequences
testdb=> CREATE TABLE tabell (

id integer default nextval('news_id') UNIQUE not
NULL,
news text not NULL,
post_time time default now()

);

testdb=> INSERT INTO tabell (news) VALUES (‘abc');
INSERT 7259941 1
testdb=> INSERT INTO tabell (news) VALUES (‘def');
INSERT 7259943 1
testdb=> INSERT INTO tabell (news) VALUES (‘ghi');
INSERT 7259944 1

testdb=> SELECT * FROM tabell;
id | news | post_time

------+-------+----------
1000 | abc | 15:18:40
1001 | def | 15:18:56
1002 | ghi | 15:19:36

Subqueries

Subqueries as a constant:
SELECT f1.firstname, f1.lastname, f1.state

FROM friend f1
WHERE f1.state <> (SELECT f2.state

FROM friend f2
WHERE f2.firstname = ‘Dick’ AND

f2.lastname = ‘Cleason’);

Subqueries as correlated values:
SELECT f1.firstname, f1.lastname, f1.age

FROM friend f1
WHERE age = (SELECT MAX(f2.age)

FROM friend f2
WHERE f1.state = f2.state);

Multiple columns are supported:
WHERE (uppercol1, uppercol2) IN (SELECT col1, col2 FROM
subtable)

Subqueries can also be used for DELETE, INSERT & UPDATE
SELECT INTO creates a new table with the result set

Indexing

The following indexing algorithms are supported:
B-tree (default)
R-tree
Hash, and
GiST

Write-Ahead Logging (WAL)

Standard technique for transactional logging:
Changes in data files can only be written after the
changes have been logged and the log has been
written to disc
No need to flush the data files after each COMMIT

Advantages:
Reduces the number of writes against disk
One sync against the log file instead of potentially
many against the data files
The log file is written sequentially
Ensures consistency of the data files
Enables online backup and point-in-time recovery

New features in PostgreSQL 8.0

7.0 released in mid-2000, so 4.5 years of
development

8 months of development of new features compared to 7.x
17 pages of changes
5 months of beta testing
Goal: Make PostgreSQL ’enterprise ready’

Most important new features:
Tablespaces: spread data files across disks
Savepoints
Point-in-time Recovery (PITR)
Perl integrated in the server
Native support for Windows (~10 man years)

Tablespaces

Pre 8.0 required symlinking in order to place datafiles in
other places than the default

Tablespaces let us specifiy where to place:
Database
Schema
Tables
Indices

Advantages:
Granular to object-level
Improves perfomance and control over disc usage
Better flexibility to add space when a disk fills up

CREATE TABLESPACE fastspace LOCATION ’/disk1/pgsql/data’;
CREATE TABLE foo(i int) TABLESPACE fastspace;

Savepoints

Savepoints gives us the ability to handle error conditions
within a transaction in a gracious manner without bailing out
of it

Changes before a savepoint are implemented even if a rollback occurs
later in the transaction
Rollbacks within the transaction is not visible outside the transaction

BEGIN;
UPDATE accounts SET balance = balance - 100.00 WHERE name = ’Alice’;
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE name = ’Bob’;

Oops ... use the account of Charlie instead!

ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00 WHERE name = ’Charlie’;
COMMIT;

O
n

e
tr

an
sa

ct
io

n

Point-In-Time Recovery

Prior to PostgreSQL 8, the only way of recovering
from a disc crash was to:

Recreate data from backup
Use replication

Point-in-time recovery supports continuous backup
of the serveren:

The Write-Ahead-Log describe all changes; by backup up
this, we can fast forward and rewind the database state to
a given point in time
PITR is based on continous transmission of the WAL to a
failover machine, based one a freely chosed archival
technique
Enable recover from the time of crash, or arbitrary
chosen point in time

Native support for Windows #1

Windows was formerly supported through the use of
Cygwin; PostgreSQL 8 includes native support on
2000, XP and 2003.
Can run as a service
New, nifty installer:

Native support for Windows #2

Includes the following add-ons:
Npgsql
JDBC
psqlODBC
pgAdmin III

PostgreSQL
behind the scenes

Overall architecture

ClientClient Server processesServer processes
ClientClient

applicationapplication
postmasterpostmaster

(daemon)(daemon)

postgrespostgres

(backend)(backend)

postgrespostgres

(backend)(backend)

postgrespostgres

(backend)(backend)
ClientClient

librarylibrary

lib
p

q Queries and
result sets

Initial connection
and authentication

Spawns a
server process

Kernel disk

buffers

Disk

Disk-

buffers

Tables

Shared

23961 Ss 0:05.64 /usr/local/bin/postmaster (postgres)
23963 S 0:01.13 postmaster: stats buffer process (postgres)
23966 S 0:03.24 postmaster: stats collector process (postgres)
36324 I 0:00.43 postmaster: oddbjorn testdb [local] idle (postgres)
36428 I 0:00.23 postmaster: oddbjorn testdb [local] idle (postgres)

What happens during a query?
1. The query arrives by a socket; put into a

string

2. Lex/yacc chops up the string, and the
type of query is identified

3. Judge whether this is a complex query
or the use of a utility command

4. Call respective utility command and
return.

5. Apply rules, views and so on

6. Choose optimal plan based upon cost of
query tree paths; send it to the executor

7. Execute query, fetch data, sort, perform
joins, qualify data and return the result
set

Parser

Traffic cop

Rewrite &
Generate paths

Planner /
optimizer

Executor

Postgres

Utility cmd

query tree

query plan

query tree + views ++

query tree

Tuning: EXPLAIN
PostgreSQL creates a query plan for each query
EXPLAIN is an important tool to understand and tune the query plans:

testdb=> EXPLAIN SELECT * FROM syslog;
QUERY PLAN

--
Seq Scan on syslog (cost=0.00..20.00 rows=1000 width=104)
(1 row)

1. Estimated startup cost
2. Estimated total cost for all rows
3. Estimated number of rows in the result set
4. Width in number of bytes per row in result set

(Much more information): Efficient SQL, OSCON 2003
http://www.gtsm.com/oscon2003/toc.html

Kostnadene er målt i antall pages som
må hentes fra disk. CPU-kostnadene
konverteres til disk-enheter.

Tuning: ANALYZE
testdb=> ANALYZE VERBOSE syslog;
INFO: analyzing "public.syslog"
INFO: "syslog": 3614 pages, 3000 rows sampled, 26243 estimated total rows
ANALYZE
testdb=> EXPLAIN SELECT * from syslog;

QUERY PLAN

Seq Scan on syslog (cost=0.00..3876.43 rows=26243 width=132)

(1 row)

The quality of the plan is dependent upon:
The knowledge PostgreSQL has about tables, indices ++
combined with the parameter settings in postgresql.conf

Tuning: VACUUM

VACUUM must be run periodically to:
1. Free space used by updated or deleted rows
2. Update the statistics used to create query plans
3. Protect against loss of data due to wraparound of the transaction ID

Can be run in parallel with ordinary use of the database

pg_autovacuum
contrib-client monitoring all the databases in an instance of PostgreSQL
Use the collection of statistics to monitor, UPDATE- and DELETE-
activity
Automagically starts VACUUMing when defined thresholds are met

Directory structure

/usr/local/pgsql/data
PG_VERSION eg.”8.0”
postgresql.conf main config file
postmaster.opts options
postmaster.pid PID
pg_hba.conf access control
pg_ident.conf mapping between identies

base/ the database files
global/
pg_log/ application logs
pg_clog/ transaction logs
pg_xlog/ WAL logs
pg_tblspc/ tablespaces

postgresql.conf: Connection Settings

tcpip_socket = false
max_connections = 20
#superuser_reserved_connections = 2
port = 5432
[..]

postgresql.conf: Resource Settings

- Memory -

shared_buffers = 1000 # min 16, at least max_connections*2, 8KB each
#sort_mem = 1024 # min 64, size in KB
#vacuum_mem = 8192 # min 1024, size in KB

- Free Space Map -

#max_fsm_pages = 20000 # min max_fsm_relations*16, 6 bytes each
#max_fsm_relations = 1000 # min 100, ~50 bytes each

- Kernel Resource Usage -

#max_files_per_process = 1000 # min 25
#preload_libraries = ''

postgresql.conf: Miscellaneous
Security & Authentication
Write Ahead Log

Settings
Checkpoints

Query Tuning
Planner Method Enabling
Planner Cost Constants
Genetic Query Optimizer

Error Reporting and Logging
syslog
When to log
What to log

Runtime Statistics
Statistics Monitoring
Query/Index Statistics Collector

Client Connection Defaults
Statement Behaviour
Locale and Formatting

Lock Management
Version / Platform Compatibility

Access control: pg_hba.conf
PostgreSQL Client Authentication Configuration File
===
#
This file controls: which hosts are allowed to connect, how clients
are authenticated, which PostgreSQL user names they can use, which
databases they can access. Records take one of seven forms:
#
local DATABASE USER METHOD [OPTION]
host DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]
hostssl DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]
hostnossl DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]
host DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]
hostssl DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]
hostnossl DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]
#
[..]
METHOD can be "trust", "reject","md5", "crypt",
"password", "krb4", "krb5", "ident", or "pam".
#
If you want to allow non-local connections, you need to add more
"host" records. Also, remember TCP/IP connections are only enabled
if you enable "tcpip_socket" in postgresql.conf.

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all all trust
host all all 127.0.0.1 255.255.255.255 trust
host all all 192.168.1.2 255.255.255.255 trust

Check of status: pg_controldata

home ~> pg_controldata /usr/local/pgsql/data
pg_control version number: 72
Catalog version number: 200310211
Database cluster state: in production
pg_control last modified: Sun Jan 30 17:08:32 2005
Current log file ID: 0
Next log file segment: 57
Latest checkpoint location: 0/3879ABE4
Prior checkpoint location: 0/3879ABA4
Latest checkpoint's REDO location: 0/3879ABE4
Latest checkpoint's UNDO location: 0/0
Latest checkpoint's StartUpID: 78
Latest checkpoint's NextXID: 886791
Latest checkpoint's NextOID: 5065687
Time of latest checkpoint: Thu Jan 27 16:19:38 2005
Database block size: 8192
Blocks per segment of large relation: 131072
Maximum length of identifiers: 64
Maximum number of function arguments: 32
Date/time type storage: floating-point numbers
Maximum length of locale name: 128
LC_COLLATE: C
LC_CTYPE: C

System Catalog + Information schema

The System Catalog: pg_catalog
The system catalog is a schema containing PostgreSQL-
specific tables and views describing available tables, data
types, functions and operators

The Information Schema: information_schema
Automatically established in all databases as a subset of
pg_catalog
Defined in the SQL standarden; stable and portable
Does not contain PostgreSQL-specific information

psql: Listing the System Catalog
test=> \dS
List of relations
Schema | Name | Type | Owner

------------+--------------------------+---------+-------
pg_catalog | pg_aggregate | table | pgsql
pg_catalog | pg_am | table | pgsql
pg_catalog | pg_amop | table | pgsql
pg_catalog | pg_amproc | table | pgsql
pg_catalog | pg_attrdef | table | pgsql
pg_catalog | pg_attribute | table | pgsql
pg_catalog | pg_cast | table | pgsql
pg_catalog | pg_class | table | pgsql
pg_catalog | pg_constraint | table | pgsql
pg_catalog | pg_conversion | table | pgsql
pg_catalog | pg_database | table | pgsql
pg_catalog | pg_depend | table | pgsql
pg_catalog | pg_description | table | pgsql
pg_catalog | pg_group | table | pgsql
pg_catalog | pg_index | table | pgsql
pg_catalog | pg_indexes | view | pgsql
pg_catalog | pg_inherits | table | pgsql
[..]

I tabellene i systemkatalogen, lagrer PostgreSQL metadata;
f.eks. informasjon om databaser, tabeller, views, brukere
og så videre. Ved CREATE DATABASE blir f.eks.
pg_database oppdatert, samt databasen skrevet til disk.

ER diagram of the pg_catalog

Available data types: \dT+ in psql
List of data types

Schema | Name | Internal name | Size | Description
------------+-----------------------------+------------------+------+---
pg_catalog | "SET" | SET | var | set of tuples
pg_catalog | "any" | any | 4 |
pg_catalog | "char" | char | 1 | single character
pg_catalog | "path" | path | var | geometric path '(pt1,...)'
pg_catalog | "trigger" | trigger | 4 |
pg_catalog | "unknown" | unknown | var |
pg_catalog | abstime | abstime | 4 | absolute, limited-range date and time (Unix system time)
pg_catalog | aclitem | aclitem | 12 | access control list
pg_catalog | anyarray | anyarray | var |
pg_catalog | anyelement | anyelement | 4 |
pg_catalog | bigint | int8 | 8 | ~18 digit integer, 8-byte storage
pg_catalog | bit | bit | var | fixed-length bit string
pg_catalog | bit varying | varbit | var | variable-length bit string
pg_catalog | boolean | bool | 1 | boolean, 'true'/'false'
pg_catalog | box | box | 32 | geometric box '(lower left,upper right)'
pg_catalog | bytea | bytea | var | variable-length string, binary values escaped
pg_catalog | character | bpchar | var | char(length), blank-padded string, fixed storage length
pg_catalog | character varying | varchar | var | varchar(length), non-blank-padded string, variable storage length
pg_catalog | cid | cid | 4 | command identifier type, sequence in transaction id
pg_catalog | cidr | cidr | var | network IP address/netmask, network address
pg_catalog | circle | circle | 24 | geometric circle '(center,radius)'
pg_catalog | cstring | cstring | var |
pg_catalog | date | date | 4 | ANSI SQL date
pg_catalog | double precision | float8 | 8 | double-precision floating point number, 8-byte storage
pg_catalog | inet | inet | var | IP address/netmask, host address, netmask optional
pg_catalog | int2vector | int2vector | 64 | array of 32 int2 integers, used in system tables
pg_catalog | integer | int4 | 4 | -2 billion to 2 billion integer, 4-byte storage
pg_catalog | internal | internal | 4 |
pg_catalog | interval | interval | 12 | @ <number> <units>, time interval
pg_catalog | language_handler | language_handler | 4 |
pg_catalog | line | line | 32 | geometric line (not implemented)'
pg_catalog | lseg | lseg | 32 | geometric line segment '(pt1,pt2)'
pg_catalog | macaddr | macaddr | 6 | XX:XX:XX:XX:XX:XX, MAC address
pg_catalog | money | money | 4 | monetary amounts, $d,ddd.cc
pg_catalog | name | name | 64 | 63-character type for storing system identifiers
pg_catalog | numeric | numeric | var | numeric(precision, decimal), arbitrary precision number
pg_catalog | oid | oid | 4 | object identifier(oid), maximum 4 billion
pg_catalog | oidvector | oidvector | 128 | array of 32 oids, used in system tables
pg_catalog | opaque | opaque | 4 |
pg_catalog | point | point | 16 | geometric point '(x, y)'
pg_catalog | polygon | polygon | var | geometric polygon '(pt1,...)'
pg_catalog | real | float4 | 4 | single-precision floating point number, 4-byte storage
pg_catalog | record | record | 4 |
pg_catalog | refcursor | refcursor | var | reference cursor (portal name)
pg_catalog | regclass | regclass | 4 | registered class
pg_catalog | regoper | regoper | 4 | registered operator
pg_catalog | regoperator | regoperator | 4 | registered operator (with args)
pg_catalog | regproc | regproc | 4 | registered procedure
pg_catalog | regprocedure | regprocedure | 4 | registered procedure (with args)
pg_catalog | regtype | regtype | 4 | registered type
pg_catalog | reltime | reltime | 4 | relative, limited-range time interval (Unix delta time)
pg_catalog | smallint | int2 | 2 | -32 thousand to 32 thousand, 2-byte storage
pg_catalog | smgr | smgr | 2 | storage manager
pg_catalog | text | text | var | variable-length string, no limit specified
pg_catalog | tid | tid | 6 | (Block, offset), physical location of tuple
pg_catalog | time with time zone | timetz | 12 | hh:mm:ss, ANSI SQL time
pg_catalog | time without time zone | time | 8 | hh:mm:ss, ANSI SQL time
pg_catalog | timestamp with time zone | timestamptz | 8 | date and time with time zone
pg_catalog | timestamp without time zone | timestamp | 8 | date and time
pg_catalog | tinterval | tinterval | 12 | (abstime,abstime), time interval
pg_catalog | void | void | 4 |
pg_catalog | xid | xid | 4 | transaction id
(62 rows)

Operations against columns of the same data Operations against columns of the same data
type gives consistent results, and are usually type gives consistent results, and are usually
the fastestthe fastest

Proper use of daat types implies format Proper use of daat types implies format
validation of the data, and rejection of data validation of the data, and rejection of data
outside the scope of the data typeoutside the scope of the data type

Proper use of data types give the most Proper use of data types give the most
efficient storage of dataataefficient storage of dataata

Mindmap of the built-in data types
(not translated yet)

Network data types

Three data types:
inet - host or network mask, eg. 10.0.0.1
cidr - network mask, eg. 10.0.0.0/8
macaddr - eg. ’08:00:2b:01:02:03’

Very useful when working with network information:
1. WHERE ’192.168.1.5’ < ’192.168.1.6’
2. WHERE ’192.168.1/24’ >> ’192.168.1.5’
3. WHERE ip << ’192.168.1.0/24’
4. trunc(macaddr)

Functions and operators
(not translated yet)

Support for regular expressions

Support for three kinds of pattern matching:
The SQL LIKE operator
The SQL99 SIMILAR TO-operator
POSIX-style regular expressions

Example of the latter:
’abc’ ~ ’abc’ true
’abc’ ~ ’^a’ true
’abc’ ~ ’(b|d)’ true
’abc’ ~ ’^(b|c)’ false

Replication solutions

Slony-I

“Master to multiple slaves” replication
Developed by Jan Wieck
Slony is Russian plural for elephant
Arguably the coolest mascot
http://www.slony.info

Supports:
Establishing a replica while running
Asynchrounous replication
Any replica can take on the duties of any other node

Mechanism for promoting a slave to master if master dies

Slony-2 is going to support multi-master replication

Introducing Slony & Building and Configuring Slony
A. Elein Mustain
http://www.onlamp.com/lpt/a/{5328,5486}

Slony-I: Graphical description

Master

Slave
Level 1

Slave
Level 1

Slave
Level 2

Slave
Level 2

Slave
Level 1

Cascading

New York

London

Other replication solutions
pgcluster

Synchronous replication including load balancing
http://pgcluster.projects.postgresql.org/

pgpool
Connection-pool-server; implemented as a layer between clients and up to two
PostgreSQL servers
Caches connections for improved performance
Automatic failover to secondary server if/when the primary fails
pgpool sends the transactions in parallel to each server

eRServer
Trigger-based single-master/multi-slave asynchronous replication
No longer alive?
http://www.erserver.com/

pgreplicator
“Store and forward” asynchronous replication
Two-way synchronization, differential replication
No longer developed?
http://pgreplicator.sourceforge.net

Programming PostgreSQL

Languages: Frontend versus backend

Frontend:
Languages to access data from the ’outside’, for example
scripts or applications

Backend:
Languages to extend the functionality of the database
server

Practically all the languages can be used in both
roles.
Classical balancing between functionality within the
database or in the application.

Functions in other languages
PostgreSQL supports user-defined functions in an assorted
array of languages beyond SQL og C:

PL/pgSQL
PL/Tcl
PL/Perl
PL/Python
PL/PHP
PL/Java / pl-j

PL = procedural languages
Other languages can be defined by the user

PostgreSQL does not care about the source code itself; it
just transfer the procedure call to a handler which invoke the
respective interpreter and receive the results back.

Use of procedural languages
createlang plperl dbname

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
if ($_[0] > $_[1]) { return $_[0]; }
return $_[1];
$$ LANGUAGE plperl;

CREATE TABLE employee (
name text,
basesalary integer,
bonus integer

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
my ($emp) = @_;
return $emp->{basesalary} + $emp->{bonus};

$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

PL/pgSQL

PL/pgSQL is a loadable procedural language

Supports:
Defining functions and triggers
Control structures
Calculations
Reuses all data types, functions and operators available in
PostgreSQL
Grouping of transactions in one procedure invocation,
reducing client/server overhead

SQL-based functions: Example
CREATE FUNCTION tax(numeric)

RETURNS numeric
AS ‘SELECT ($1 * 0.06::numeric(8,2))::numeric(8,2);’
LANGUAGE ‘sql’;

CREATE FUNCTION shipping(numeric)
RETURNS numeric
AS ‘SELECT CASE

WHEN $1 < 2 THEN CAST(3.00 AS numeric(8,2))
WHEN $1 >= 2 AND $1 < 4 THEN CAST(5.00 AS numeric(8,2))
WHEN $1 >=4 THEN CAST(6.00 AS numeric(8,2))

END;’
LANGUAGE ‘sql’;

SELECT part_id, trim(name) AS name, cost, tax(cost), cost +
tax(cost) AS subtotal, shipping(weight), cost + tax(cost) +
shipping(weight) AS total
FROM part
ORDER BY part_id;

PL/pgSQL: Example
CREATE TABLE emp (empname text, salary int4,

last_date datetime, last_user name);

CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS
BEGIN
-- Check that empname and salary are given
IF NEW.empname ISNULL THEN

RAISE EXCEPTION ''empname cannot be NULL value' ';
END IF;
IF NEW.salary ISNULL THEN

RAISE EXCEPTION ''% cannot have NULL salary'', NEW.empname;
END IF;
-- Who works for us when she must pay for?
IF NEW.salary < 0 THEN

RAISE EXCEPTION ''% cannot have a negative salary'',
NEW.empname;
END IF;
-- Remember who changed the payroll when
NEW.last_date := ' 'now' ';
NEW.last_user := getpgusername();
RETURN NEW;
END; '

LANGUAGE 'plpgsql';

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

pl/R

R is an integrated environment for manipulating, calulating
and displaying data

Based upon AT&Ts S

R includes:
efficient management and storage of data
operators for manipulating tables and matrices
large number of functions and tools to analyze data
tool to create high quality graphs, both for screen and print
a mature programming language to tie the above together

PL/R is a loadable procedural language which enable
functions and triggers in PostgreSQL to be expressed in R:

Written by Joe Conway
How to Graph data in PostgreSQL by Robert Bernier:

http://www.varlena.com/varlena/GeneralBits/Tidbits/ +
bernier/art_66/graphingWithR.html

pl/R: Plotting of firewall logs

BEGIN;

CREATE TEMPORARY TABLE
mytemp(id serial, hit int, source_ip inet)
ON COMMIT DROP;

INSERT INTO mytemp(hit,source_ip)
SELECT count(*) AS counterhits, source_ip
FROM firewall
GROUP BY source_ip
ORDER BY counterhits DESC;

CREATE OR REPLACE FUNCTION f_graph2() RETURNS text AS '
sql <- paste("SELECT id as x,hit as y FROM mytemp LIMIT 30",sep="");
str <- c(pg.spi.exec(sql));

mymain <- "Graph 2";
mysub <- paste("The worst offender is: ",str[1,3]," with ",str[1,2]," hits",sep="");
myxlab <- "Top 30 IP Addresses";
myylab <- "Number of Hits";

pdf(''/tmp/graph2.pdf'');
plot(str,type="b",main=mymain,sub=mysub,xlab=myxlab,ylab=myylab,lwd=3);
mtext("Probes by intrusive IP Addresses",side=3);
dev.off();

print(''DONE'');
' LANGUAGE plr;

-- now generating the graph
SELECT f_graph2();
COMMIT;

Other interfaces
psqlODBC

This is the most common interface for Windows applications.
pgjdbc

A JDBC interface.
Npgsql

.Net interface for more recent Windows applications.
libpqxx

A newer C++ interface.
libpq++

An older C++ interface.
pgperl

A Perl interface with an API similar to libpq.
DBD-Pg

A Perl interface that uses the DBD-standard API.
pgtclng

A newer version of the Tcl interface.
pgtcl

The original version of the Tcl interface.
PyGreSQL

A Python interface library.

Use of PostgreSQL from Perl

DBI / DBD::Pg / DBD::PgPP (not libpq-based)

#!/usr/local/bin/perl –w

use DBI;

$dbh = DBI->connect('dbi:Pg:dbname=testdb;', ‘username', '');

$sth = $dbh->prepare(“SELECT id,news from news”);
$sth->execute;

while (@news = $sth->fetchrow) {
$date = $news[0];
$article = $news[1];

print(“$date:\t $article\n”);
}

Use of PostgreSQL from Python #1

PygreSQL
The oldest and most tested
http://www.pygresql.org

psycopg
Based upon libpq, with DB API-interface
Used a lot by Zope
Smart reuse of connections
http://initd.org/software/initd/psycopg

and others (pyPgSQL, DB-API)

Use of PostgreSQL from Python #2
import psycopg

o = psycopg.connect('dbname=mydb user=fog')

c = o.cursor()
c.execute('SELECT * FROM addressbook WHERE name = %s', [‘Bob'])
data = c.fetchone()

print "Saving image of %s %s" % (data[0], data[1])
open(data[0]+".png", 'w').write(data[3])

Use of PostgreSQL from PHP
http://www.php.net/manual/en/ref.pgsql.php

$conn = pg_connect("dbname=testdb");

if (!$conn) {
print("Connection Failed.");
exit;

}

$query = “SELECT posted_date,posted_time,news FROM news”;
$news = pg_query($conn, $query);

echo "<table border=1>\n";

for($i = 0; $i < pg_num_rows($news); $i++) {
echo "<tr>\n";
echo "<td>” . pg_result($news, $i, 0) . "</td>\n";
echo "<td>" . pg_result($news, $i, 1) . "</td>\n";
echo "<td>" . pg_result($news, $i, 2) . "</td>\n";
echo "</tr>";

}

echo "</table>";

ODBC & JDBC

ODBC
http://odbc.postgresql.org/

JDBC
Pure Java-implementation
Supports JDBC v3 + extensions
http://jdbc.postgresql.org/

Both available as FreeBSD-ports

Third party tools

Autodoc

Tool to automagically document a database

Template-based reporting to the following formats:
HTML
Dot
Dia
Docbook XML

Autodoc: Examples #1

HTML Docbook

Autodoc: Examples #2

dia

graphviz

PostGIS

PostGIS implements support for spatial data, ie. data
which describe a location or shape:

Points
Lines
Polygons

plus functions related to these:
Distance
Proximity (”touching” and ”connectivity”)
Containing (”inside” and ”overlapping”)

PostGIS-example: Optimized pub searches
CREATE TABLE pubs (name VARCHAR, beer_price FLOAT4);
ADDGEOMETRYCOLUMN (‘beer_db’,'pubs','location’ ,2167,'POINT',3);

INSERT INTO pubs VALUES ('Garricks Head',4.50,GeometryFromText('POINT
(1196131 383324)’,2167));

SELECT name, beer_price,
DISTANCE(location, GeometryFromText('POINT(1195722 383854)',2167))
FROM pubs ORDER BY beer_price;

name | beer_price | distance
---------------+------------+------------------
Fireside | 4.25 | 1484.10275160491
The Forge | 4.33 | 1533.06561109862
Rumours | 4.46 | 2042.00094093097
Garricks Head | 4.5 | 669.389105609889
Slap Happy | 4.5 | 1882.31910168298
Old Bailys | 4.55 | 1147.20900404641
Black Sheep | 4.66 | 536.859935972633
Big Bad Daves | 4.75 | 907.446543878884

SELECT name, beer_price + 0.001 * DISTANCE(location,
GeometryFromText('POINT(1195722 383854)',2167))
AS net_price FROM pubs ORDER BY price;

name | net_price
---------------+------------------
Garricks Head | 5.16938910560989
Black Sheep | 5.19685978338474
Big Bad Daves | 5.65744654387888
Old Bailys | 5.69720919478127
Fireside | 5.73410275160491
The Forge | 5.86306553480468
Slap Happy | 6.38231910168298
Rumours | 6.50200097907794

How to get started?

www.postgresql.org

Documentation #1

Documentation #2

13321332
pages!pages!

http://pgfoundry.org

http://gborg.postgresql.org/

Mailing lists & IRC

An assortment of mailing lists are available:
http://www.postgresql.org/community/lists/subscribe
High volume
High level of competence
User-friendly

Archives available from:
http://archives.postgresql.org/

IRC: irc.freenode.net/#postgresql
An unique mix of competence and friendliness

pgsql-admin
pgsql-advocacy
pgsql-announce
pgsql-bugs
pgsql-docs
pgsql-general
pgsql-hackers
pgsql-interfaces
pgsql-jdbc
pgsql-novice
pgsql-odbc
pgsql-performance
pgsql-php
pgsql-sql

Web resources

http://techdocs.postgresql.org/
Technical articles and miscellaneous information

General Bits by A. Elein Mustain
http://www.varlena.com/GeneralBits
Weekly summary of the pgsql-general mailing list

PGSearch:
http://www.pgsql.ru/db/pgsearch
Search engine based on PostgreSQL and TSearch2

pg_live

Knoppix-based live-CD with PostgreSQL
Compiled by Robert Bernier
Newest version is 1.3.3, released 8. februar 2005
http://www.sraapowergres.com +
/en/newsletter/issue_02/pg_live/pg_live.1.3.3.iso

Books about PostgreSQL

• http://www.postgresql.org/docs/books/awbook.html
• http://www.commandprompt.com/ppbook/

Questions?

The presentation is available from:
http://www.tricknology.org/foilware/

oddbjorn@tricknology.org

Uh oh...

	Get to knowPostgreSQL!
	Agenda (must be updated for the final set)
	Background
	What is PostgreSQL?
	Where does it come from?
	PostgreSQL Global Development Team
	PostgreSQL development
	Release history
	Practical useof PostgreSQL
	Installation of PostgreSQL
	Initializing PostgreSQL
	Establishing a database
	psql: The primary CLI client
	psql: \?: Listing the internal commands
	psql: \d: Describe
	psql: Example of \d in use
	psql: \h: SQL-help
	CREATE / ALTER / DROP of objects
	SQL-transactions and maintenance
	SQL: Miscellaneous
	psql: Example of \h select
	psql: Miscellaneous features
	psql: Bulk copy of data: \COPY
	pgAdmin III
	pgAdmin III: Screenshots
	phpPgAdmin
	Pgbash: PostgreSQL access from the shell
	Miscellaneous commands
	Contrib
	PostgreSQL features
	Overall features
	Features
	Compliance with the SQL standard
	Features to ensure data integrity: ACID
	MultiVersion Concurrency Control (MVCC)
	Transactions
	Views
	Schemas
	Constraints
	Triggers
	Inheritance
	Example of inheritance
	Cursors
	Sequences
	Subqueries
	Indexing
	Write-Ahead Logging (WAL)
	New features in PostgreSQL 8.0
	Tablespaces
	Savepoints
	Point-In-Time Recovery
	Native support for Windows #1
	Native support for Windows #2
	PostgreSQLbehind the scenes
	Overall architecture
	What happens during a query?
	Tuning: EXPLAIN
	Tuning: ANALYZE
	Tuning: VACUUM
	Directory structure
	postgresql.conf: Connection Settings
	postgresql.conf: Resource Settings
	postgresql.conf: Miscellaneous
	Access control: pg_hba.conf
	Check of status: pg_controldata
	System Catalog + Information schema
	psql: Listing the System Catalog
	ER diagram of the pg_catalog
	Available data types: \dT+ in psql
	Mindmap of the built-in data types(not translated yet)
	Network data types
	Functions and operators(not translated yet)
	Support for regular expressions
	Replication solutions
	Slony-I
	Slony-I: Graphical description
	Other replication solutions
	Programming PostgreSQL
	Languages: Frontend versus backend
	Functions in other languages
	Use of procedural languages
	PL/pgSQL
	SQL-based functions: Example
	PL/pgSQL: Example
	pl/R
	pl/R: Plotting of firewall logs
	Other interfaces
	Use of PostgreSQL from Perl
	Use of PostgreSQL from Python #1
	Use of PostgreSQL from Python #2
	Use of PostgreSQL from PHP
	ODBC & JDBC
	Third party tools
	Autodoc
	Autodoc: Examples #1
	Autodoc: Examples #2
	PostGIS
	PostGIS-example: Optimized pub searches
	How to get started?
	www.postgresql.org
	Documentation #1
	Documentation #2
	http://pgfoundry.org
	http://gborg.postgresql.org/
	Mailing lists & IRC
	Web resources
	pg_live
	Books about PostgreSQL
	Questions?
	Uh oh...

