The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution.

Creative Commons Attribution License  
http://momjian.us/presentations

Last updated: August, 2019
Postgres Query Execution
Postgres Query Execution

- **Main**
  - **Postmaster**
    - **Postgres**
      - **Parse Statement**
        - **Traffic Cop**
          - **Rewrite Query**
            - **Generate Paths**
              - **Optimal Path**
                - **Generate Plan**
                  - **Execute Plan**

- **Utility Command** (e.g., CREATE TABLE, COPY)

- **Libpq**

- **Storage Managers**
  - **Catalog**
  - **Utilities**
  - **Access Methods**
- **Nodes / Lists**

**Flow**:
- Parse Statement → Traffic Cop → Rewrite Query → Generate Paths → Optimal Path → Generate Plan → Execute Plan
- Utility Command
- Libpq

**Storage**:
- Utilities
- Catalog
- Storage Managers
- Access Methods
- Nodes / Lists
Postgres Query Execution

Parse Statement → Traffic Cop → Rewrite Query → Generate Paths → Optimal Path → Generate Plan → Execute Plan

Utility Command → utility

Query

SELECT, INSERT, UPDATE, DELETE

e.g. CREATE TABLE, COPY
The Optimizer Is the Brain

https://www.flickr.com/photos/dierkschaefer/
What Decisions Does the Optimizer Have to Make?

- Scan Method
- Join Method
- Join Order
Which Scan Method?

- Sequential Scan
- Bitmap Index Scan
- Index Scan
A Simple Example Using \textit{pg\_class.relname}

```sql
SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
```

<table>
<thead>
<tr>
<th>relname</th>
</tr>
</thead>
<tbody>
<tr>
<td>_pg_foreign_data_wrappers</td>
</tr>
<tr>
<td>_pg_foreign_servers</td>
</tr>
<tr>
<td>_pg_user_mappings</td>
</tr>
<tr>
<td>administrable_role_authorizations</td>
</tr>
<tr>
<td>applicable_roles</td>
</tr>
<tr>
<td>attributes</td>
</tr>
<tr>
<td>check_constraint_routine_usage</td>
</tr>
<tr>
<td>check_constraints</td>
</tr>
</tbody>
</table>

8 / 56
Let’s Use Just the First Letter of \textit{pg\_class.relname}

```sql
SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
```

\begin{verbatim}
   substring
----------
   _
   _
   _
   _
   a
   a
   a
   a
   a
   c
   c
\end{verbatim}
CREATE TEMPORARY TABLE sample (letter, junk) AS
    SELECT substring(relname, 1, 1), repeat('x', 250)
    FROM pg_class
    ORDER BY random(); -- add rows in random order

CREATE INDEX i_sample on sample (letter);

All queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql.
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXECUTE 'EXPLAIN SELECT letter
FROM sample
WHERE letter = ' || $1 || ' ''';
END
$$ LANGUAGE plpgsql;
What is the Distribution of the *sample* Table?

WITH letters (letter, count) AS (  
    SELECT letter, COUNT(*)  
    FROM sample  
    GROUP BY 1
)

SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%"  
FROM letters  
ORDER BY 2 DESC;
What is the Distribution of the *sample* Table?

<table>
<thead>
<tr>
<th>letter</th>
<th>count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>199</td>
<td>78.7</td>
</tr>
<tr>
<td>s</td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td>c</td>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>r</td>
<td>7</td>
<td>2.8</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>v</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>u</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>_</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
EXPLAIN SELECT letter
FROM sample
WHERE letter = 'p';

QUERY PLAN

Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
  Index Cond: (letter = 'p'::text)
Is the Distribution Important?

```
EXPLAIN SELECT letter
FROM sample
WHERE letter = 'd';

QUERY PLAN

Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
  Index Cond: (letter = 'd'::text)
```
Is the Distribution Important?

```
EXPLAIN SELECT letter
FROM sample
WHERE letter = 'k';

QUERY PLAN

------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
  Index Cond: (letter = 'k'::text)
```
Running **ANALYZE** Causes a Sequential Scan for a Common Value

```sql
ANALYZE sample;

EXPLAIN SELECT letter
FROM sample
WHERE letter = 'p';

QUERY PLAN

Seq Scan on sample  (cost=0.00..13.16 rows=199 width=2)
  Filter: (letter = 'p'::text)
```

Autovacuum cannot **ANALYZE** (or **VACUUM**) temporary tables because these tables are only visible to the creating session.
Sequential Scan

Heap

8K
A Less Common Value Causes a Bitmap Index Scan

EXPLAIN SELECT letter
FROM sample
WHERE letter = 'd';

QUERY PLAN

-----------------------------------------------------------------------
Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
  Recheck Cond: (letter = 'd'::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0)
  Index Cond: (letter = 'd'::text)
### Bitmap Index Scan

**Index 1**  
col1 = 'A'

| 0 | 1 | 0 | 1 | 0 |

**Index 2**  
col2 = 'NS'

| 0 | 1 | 0 | 1 | 0 |

**Combined**  

| 0 | 1 | 0 | 1 | 0 |

**Table**  
'A' AND 'NS'

```
+--------+--------+--------+--------+--------+
|        |        |        |        |        |
|        |        |        |        |        |
|        |        |        |        |        |
|        |        |        |        |        |
|        |        |        |        |        |
+--------+--------+--------+--------+--------+
```
EXPLAIN SELECT letter
FROM sample
WHERE letter = 'k';

QUERY PLAN

Index Scan using i_sample on sample  (cost=0.00..8.27 rows=1 width=2)
  Index Cond: (letter = 'k'::text)
Index Scan

Index

Heap

```
< Key = >
```

```
< Key = >
```

```
< Key = >
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```

```
DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA
```
Let’s Look at All Values and their Effects

```sql
WITH letter (letter, count) AS (  
    SELECT letter, COUNT(*)  
    FROM sample  
    GROUP BY 1
  )
SELECT letter AS l, count, lookup_letter(letter)  
FROM letter  
ORDER BY 2 DESC;
```

<table>
<thead>
<tr>
<th>l</th>
<th>count</th>
<th>lookup_letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>199</td>
<td>Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)</td>
</tr>
<tr>
<td>p</td>
<td>199</td>
<td>Filter: (letter = 'p'::text)</td>
</tr>
<tr>
<td>s</td>
<td>9</td>
<td>Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)</td>
</tr>
<tr>
<td>s</td>
<td>9</td>
<td>Filter: (letter = 's'::text)</td>
</tr>
<tr>
<td>c</td>
<td>8</td>
<td>Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)</td>
</tr>
<tr>
<td>c</td>
<td>8</td>
<td>Filter: (letter = 'c'::text)</td>
</tr>
<tr>
<td>r</td>
<td>7</td>
<td>Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)</td>
</tr>
<tr>
<td>r</td>
<td>7</td>
<td>Filter: (letter = 'r'::text)</td>
</tr>
</tbody>
</table>
...
```
WITH letter (letter, count) AS (  
    SELECT letter, COUNT(*)  
    FROM sample  
    GROUP BY 1
)  
SELECT letter AS l, count,  
    (SELECT *  
    FROM lookup_letter(letter) AS l2  
    LIMIT 1) AS lookup_letter  
FROM letter  
ORDER BY 2 DESC;
### Table

| l | count | lookup_letter |
|---+-------+--------------|
| p | 199   | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) |
| s | 9     | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) |
| c | 8     | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) |
| r | 7     | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) |
| t | 5     | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) |
| f | 4     | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) |
| v | 4     | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) |
| d | 4     | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) |
| a | 3     | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) |
| _ | 3     | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) |
| u | 3     | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) |
| e | 2     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) |
| i | 1     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) |
| k | 1     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) |
We Can Force an Index Scan

SET enable_seqscan = false;

SET enable_bitmapscan = false;

WITH letter (letter, count) AS (  
    SELECT letter, COUNT(*)  
    FROM sample  
    GROUP BY 1
)
SELECT letter AS l, count,  
    (SELECT *  
    FROM lookup_letter(letter) AS l2  
    LIMIT 1) AS lookup_letter  
FROM letter  
ORDER BY 2 DESC;
Notice the High Cost for Common Values

| 1 | count | lookup_letter |
|---+-------+---------------|
| p | 199   | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=2) |
| s | 9     | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2)  |
| c | 8     | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2)  |
| r | 7     | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2)  |
| t | 5     | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2)  |
| d | 4     | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)  |
| v | 4     | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)  |
| f | 4     | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)  |
| _ | 3     | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)  |
| a | 3     | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)  |
| u | 3     | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)  |
| e | 2     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)    |
| i | 1     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)    |
| k | 1     | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)    |

RESET ALL;
This Was the Optimizer’s Preference

<table>
<thead>
<tr>
<th>lookup_letter</th>
<th>count</th>
<th>operation</th>
<th>cost</th>
<th>rows</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>199</td>
<td>Seq Scan on sample</td>
<td>0.00</td>
<td>13.16</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>9</td>
<td>Seq Scan on sample</td>
<td>0.00</td>
<td>13.16</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>8</td>
<td>Seq Scan on sample</td>
<td>0.00</td>
<td>13.16</td>
<td>2</td>
</tr>
<tr>
<td>r</td>
<td>7</td>
<td>Seq Scan on sample</td>
<td>0.00</td>
<td>13.16</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.29</td>
<td>12.76</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.28</td>
<td>12.74</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>4</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.28</td>
<td>12.74</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.28</td>
<td>12.74</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.27</td>
<td>11.38</td>
<td>2</td>
</tr>
<tr>
<td>_</td>
<td>3</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.27</td>
<td>11.38</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>3</td>
<td>Bitmap Heap Scan on sample</td>
<td>4.27</td>
<td>11.38</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>Index Scan using i_sample on sample</td>
<td>0.00</td>
<td>8.27</td>
<td>2</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>Index Scan using i_sample on sample</td>
<td>0.00</td>
<td>8.27</td>
<td>2</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>Index Scan using i_sample on sample</td>
<td>0.00</td>
<td>8.27</td>
<td>2</td>
</tr>
</tbody>
</table>
Which Join Method?

- Nested Loop
  - With Inner Sequential Scan
  - With Inner Index Scan
- Hash Join
- Merge Join
What Is in `pg_proc.oid`?

```sql
SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;

oid
-----
31
33
34
35
38
39
40
41
```
Create Temporary Tables from `pg_proc` and `pg_class`

```
CREATE TEMPORARY TABLE sample1 (id, junk) AS
  SELECT oid, repeat('x', 250)
  FROM pg_proc
  ORDER BY random();  -- add rows in random order

CREATE TEMPORARY TABLE sample2 (id, junk) AS
  SELECT oid, repeat('x', 250)
  FROM pg_class
  ORDER BY random();  -- add rows in random order
```

These tables have no indexes and no optimizer statistics.
Join the Two Tables with a Tight Restriction

EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;

QUERY PLAN

---------------------------------------------------------------------
Nested Loop  (cost=0.00..234.68 rows=300 width=32)
  ->  Seq Scan on sample1  (cost=0.00..205.54 rows=50 width=4)
      Filter: (id = 33::oid)
  ->  Materialize  (cost=0.00..25.41 rows=6 width=36)
      ->  Seq Scan on sample2  (cost=0.00..25.38 rows=6 width=36)
          Filter: (id = 33::oid)
Nested Loop Join with Inner Sequential Scan

No Setup Required

Used For Small Tables
Pseudocode for Nested Loop Join with Inner Sequential Scan

for (i = 0; i < length(outer); i++)
    for (j = 0; j < length(inner); j++)
        if (outer[i] == inner[j])
            output(outer[i], inner[j]);
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.id > 33;

QUERY PLAN

Hash Join  (cost=30.50..950.88 rows=20424 width=32)
  Hash Cond: (sample1.id = sample2.id)
  ->  Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
  ->  Hash  (cost=25.38..25.38 rows=410 width=4)
       ->  Seq Scan on sample2  (cost=0.00..25.38 rows=410 width=4)
           Filter: (id > 33::oid)
Hash Join

Must fit in Main Memory
Pseudocode for Hash Join

for (j = 0; j < length(inner); j++)
    hash_key = hash(inner[j]);
    append(hash_store[hash_key], inner[j]);
for (i = 0; i < length(outer); i++)
    hash_key = hash(outer[i]);
    for (j = 0; j < length(hash_store[hash_key]); j++)
        if (outer[i] == hash_store[hash_key][j])
            output(outer[i], inner[j]);
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);

QUERY PLAN

+-------------------------------------------------------------+
| Merge Join (cost=927.72..1852.95 rows=61272 width=32)       |
| Merge Cond: (sample2.id = sample1.id)                        |
|    -> Sort (cost=85.43..88.50 rows=1230 width=4)            |
|       Sort Key: sample2.id                                   |
|       -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) |
|    -> Sort (cost=842.29..867.20 rows=9963 width=36)         |
|       Sort Key: sample1.id                                   |
|       -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) |
+-------------------------------------------------------------+
Ideal for Large Tables
An Index Can Be Used to Eliminate the Sort
Pseudocode for Merge Join

sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
  if (outer[i] == inner[j])
    output(outer[i], inner[j]);
  if (outer[i] <= inner[j] && j < length(inner))
    j++;
  if (outer[i] < inner[j])
    save_j = j;
  else
    i++;
  j = save_j;
EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id);

QUERY PLAN

----------------------------------------
Merge Join  (cost=927.72..1852.95 rows=61272 width=32)
  Merge Cond: (sample2.id = sample1.id)
    ->  Sort  (cost=85.43..88.50 rows=1230 width=36)
      Sort Key: sample2.id
      ->  Seq Scan on sample2  (cost=0.00..22.30 rows=1230 width=36)
    ->  Sort  (cost=842.29..867.20 rows=9963 width=4)
      Sort Key: sample1.id
      ->  Seq Scan on sample1  (cost=0.00..180.63 rows=9963 width=4)

The most restrictive relation, e.g., *sample2*, is always on the outer side of merge joins. All previous merge joins also had *sample2* in outer position.
ANALYZE sample1;

ANALYZE sample2;
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);

---

Hash Join  (cost=15.85..130.47 rows=260 width=254)  
  Hash Cond: (sample1.id = sample2.id)  
  ->  Seq Scan on sample1  (cost=0.00..103.56 rows=2256 width=4)  
  ->  Hash  (cost=12.60..12.60 rows=260 width=258)  
    ->  Seq Scan on sample2  (cost=0.00..12.60 rows=260 width=258)  

This was a Merge Join without Optimizer Statistics
Outer Joins Can Affect Optimizer Join Usage

EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN

Hash Left Join  (cost=131.76..148.26 rows=260 width=254)
  Hash Cond: (sample2.id = sample1.id)
  ->  Seq Scan on sample2  (cost=0.00..12.60 rows=260 width=4)
  ->  Hash  (cost=103.56..103.56 rows=2256 width=258)
    ->  Seq Scan on sample1  (cost=0.00..103.56 rows=2256 width=258)
EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;

QUERY PLAN

---------------------------------------------------------------
Nested Loop (cost=0.00..7448.81 rows=586560 width=254)
  -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254)
  -> Materialize (cost=0.00..13.90 rows=260 width=0)
    -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0)
CREATE INDEX i_sample1 on sample1 (id);

CREATE INDEX i_sample2 on sample2 (id);
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;

QUERY PLAN

---------------------------------------------------------------------------------
Nested Loop  (cost=0.00..16.55 rows=1 width=254)
  ->  Index Scan using i_sample1 on sample1  (cost=0.00..8.27 rows=1 width=4)
      Index Cond: (id = 33::oid)
  ->  Index Scan using i_sample2 on sample2  (cost=0.00..8.27 rows=1 width=258)
      Index Cond: (sample2.id = 33::oid)
---------------------------------------------------------------------------------
Nested Loop Join with Inner Index Scan

No Setup Required

Index Must Already Exist
Pseudocode for Nested Loop Join with Inner Index Scan

```plaintext
for (i = 0; i < length(outer); i++)
    index_entry = get_first_match(outer[j])
    while (index_entry)
        output(outer[i], inner[index_entry]);
        index_entry = get_next_match(index_entry);
```
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ~ '^aaa';

QUERY PLAN

<table>
<thead>
<tr>
<th>Nested Loop (cost=0.00..21.53 rows=1 width=254)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-&gt; Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258)</td>
</tr>
<tr>
<td>Filter: (junk ~ '^aaa'::text)</td>
</tr>
<tr>
<td>-&gt; Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)</td>
</tr>
<tr>
<td>Index Cond: (sample1.id = sample2.id)</td>
</tr>
</tbody>
</table>

No junk rows begin with ’aaa’.
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ~ '^xxx';

QUERY PLAN

Hash Join  (cost=16.50..131.12 rows=260 width=254)
  Hash Cond: (sample1.id = sample2.id)
     ->  Seq Scan on sample1  (cost=0.00..103.56 rows=2256 width=4)
     ->  Hash  (cost=13.25..13.25 rows=260 width=258)
          ->  Seq Scan on sample2  (cost=0.00..13.25 rows=260 width=258)
            Filter: (junk ~ '^xxx'::text)

Hash join was chosen because many more rows are expected. The smaller table, e.g., sample2, is always hashed.
Without LIMIT, Hash Is Used for this Unrestricted Join

```
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
```

```
QUERY PLAN

Hash Join  (cost=15.85..130.47 rows=260 width=254)
  Hash Cond: (sample1.id = sample2.id)
    ->  Seq Scan on sample1  (cost=0.00..103.56 rows=2256 width=4)
    ->  Hash  (cost=12.60..12.60 rows=260 width=258)
          ->  Seq Scan on sample2  (cost=0.00..12.60 rows=260 width=258)
```
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1;

QUERY PLAN

Limit (cost=0.00..1.83 rows=1 width=258)
   -> Nested Loop (cost=0.00..477.02 rows=260 width=258)
      -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
      -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
         Index Cond: (sample1.id = sample2.id)
```
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 10;
```

```
QUERY PLAN

Limit (cost=0.00..18.35 rows=10 width=258)
  -> Nested Loop (cost=0.00..477.02 rows=260 width=258)
    -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
    -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
      Index Cond: (sample1.id = sample2.id)
```
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 100;

QUERY PLAN
------------------------------------------------------------------------------------
Limit (cost=140.41..140.66 rows=100 width=258)
  -> Sort (cost=140.41..141.06 rows=260 width=258)
    Sort Key: sample2.id
    -> Hash Join (cost=15.85..130.47 rows=260 width=258)
      Hash Cond: (sample1.id = sample2.id)
      -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
      -> Hash (cost=12.60..12.60 rows=260 width=258)
        -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
Conclusion

http://momjian.us/presentations

https://www.flickr.com/photos/trevorklatko/