NULLs Make Things Easier?

BRUCE MOMJIAN

£DB
POSTGRES

Nulls are a very useful but also very error-prone relational
database feature. This talk is designed to help applications
developers better manage their use of nulls.

Creative Commons Attribution License http://momjian.us/presentations

Last updated: July, 2018

41

Null means “nothing”.

Nulls in English

2/41

Nulls In Computer Languages

C-based languages use a NULL pointer to indicate a pointer that
does not point to a value. Languages that don’t use pointers
often use an “undefined” value for a similar purpose.

Nulls in Data

What do you place in a field that has no value?
For strings, a zero-length string is reasonable.
What about numerics? -1, -99, 0?

What about dates? 1900-01-01?

Why Use NULLs

The three meanings of NULL:
» Unknown values
» Inapplicable values
» Empty placeholders

The NULL Spouse Example

If employee.spouse is NULL, does it mean?
» The spouse’s name is unknown.
» The employee is not married and therefore has no spouse.

» The employee.spouse column was an unjoined column from an
outer join.

6

41

NULLs Can Cause Their Own Problems

NEVER HAMMER ON THE END OF A
SCREWDRIVER

Don,t use NULLSs in inappropriate situations. https://www.flickr.com/photos/randar/

Warning!

In their book A Guide to Sybase and SQL Server, David
McGoveran and C. J. Date said:

It is this writer’s opinion than NULLs, at least as currently
defined and implemented in SQL, are far more trouble than
they are worth and should be avoided; they display very strange
and inconsistent behavior and can be a rich source of error and
confusion. (Please note that these comments and criticisms
apply to any system that supports SQL-style NULLs, not just
to SQL Server specifically.)"

In the rest of this book, I will be urging you not to use them,
which may seem contradictory, but it is not. Think of a NULL
as a drug; use it properly and it works for you, but abuse it and
it can ruin everything. Your best policy is to avoid NULLs
when _you can and use them properly when you have to.

Keep Your Eye on the Red (Text)

) N

https://www.flickr.com/photos/alltheaces/

9/41

Explicit NULLs

test=> SELECT NULL;
?2column?

test=> \pset null (null)

test=> SELECT NULL;
?column?

10/41

Explicitly NULL Assignment

CREATE TABLE nulltest (x INTEGER, y INTEGER);
INSERT INTO nulltest VALUES (1, NULL);

SELECT * FROM nulltest;
x|y

11/41

Implicit NULL Assignment

INSERT INTO nulltest (x) VALUES (2);

SELECT * FROM nulltest;

12/41

NULL Storage Can Be Prevented

CREATE TABLE nulltest2 (x INTEGER NOT NULL, y INTEGER NOT NULL);

INSERT INTO nulltest2 VALUES (3, NULL);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (3, null).

INSERT INTO nulltest2 (x) VALUES (4);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (4, null).

13/41

The Non-Value of NULLs

SELECT NULL + 1;
?column?

SELECT NULL || 'a';
?column?

SELECT 'b' || NULL;
?column?

14/41

NULL Is Unknown?

CREATE TABLE inctest (x INTEGER);
INSERT INTO inctest VALUES (30), (40), (NULL);

SELECT x + 1 FROM inctest;
?column?

15/41

The Three-Valued Logic of NULLs

SELECT NULL = 1;
?2column?

SELECT NULL = '';
?2column?

SELECT NULL = NULL;
?2column?

SELECT NULL
?2column?

A

NULL + 1;

NULL represents unknown, not applicable, or unassigned. It has

no data type, so comparing it to fixed values always returns NULL.
16/41

NULL Query Comparisons

SELECT 1
WHERE true;
?column?

SELECT 1
WHERE false;
?column?

SELECT 1
WHERE NULL;
?column?

WHERE only returns rows whose result is true, not false or NULL.
17/41

NULL Is Not False

SELECT true AND NULL;
?column?

SELECT NOT NULL;
?column?

18/41

SELECT * FROM

40
(nu1l)

SELECT * FROM
X

30
40

SELECT * FROM
X

SELECT * FROM
X

30
40

NULL Operator Comparisons

inctest;

inctest WHERE x >= 0;

inctest WHERE x < 0;

inctest WHERE x < 0 OR x >= 03

19

41

NULL And Not Equals

SELECT * FROM inctest WHERE x <> 10;
X

30
40

SELECT * FROM inctest WHERE x <> 10 OR x = 10;
X

30
40

20/41

NULLs And NOT IN

SELECT 1 <> 2 AND 1 <> 3;
?column?

SELECT 1 <> 2 AND 1 <> 3 AND 1 <> NULL;
?column?

21/41

Subqueries With NULL

SELECT 'a' IN (SELECT NULL::text);
?column?

SELECT 'a' NOT IN (SELECT NULL::text);
?column?

Multi-Row Subqueries

SELECT 'a' IN (SELECT 'a' UNION ALL SELECT NULL);
?column?

SELECT 'a' NOT IN (SELECT 'a' UNION ALL SELECT NULL);
?column?

SELECT 'a' IN (SELECT 'b' UNION ALL SELECT NULL);
?column?

SELECT 'a' NOT IN (SELECT 'b' UNION ALL SELECT NULL);
?column?

IN Queries Expanded

SELECT 'a' = 'b' OR 'a' = NULL;
?2column?

SELECT 'a' <> 'b' AND 'a' <> NULL;
?column?

NOT IN subqueries returning NULLs are often problematic.

24/41

Explicit NULL Comparison

SELECT NULL = NULL;
?column?

SELECT NULL IS NULL;
?column?

SELECT NULL IS NOT NULL;
?column?

25/41

Explicit NULL Comparison

SELECT * FROM inctest;

40
(nul1)

SELECT * FROM inctest WHERE x IS NULL;

SELECT * FROM inctest WHERE x IS NOT NULL;
X

30
40

26/41

Comparing NULLs With True/False Logic

SELECT 2 IS DISTINCT FROM 1;
?column?

SELECT NULL IS DISTINCT FROM 1;
?column?

SELECT NULL IS DISTINCT FROM NULL;
?column?

SELECT NULL <> 1;
?column?

Explicit Equality Comparisons With NULL

SELECT * FROM inctest WHERE x IS DISTINCT FROM 30;

40
(nul1)

SELECT * FROM inctest WHERE x IS NOT DISTINCT FROM 30;
X

30

28/41

Comparing NULLs to Other NULLs

CREATE TABLE disttest (x INTEGER, y INTEGER);
INSERT INTO disttest VALUES (1, 1), (2, 3), (NULL, NULL);

SELECT * FROM disttest where x IS NOT DISTINCT FROM y;
x |y
________ e
1| 1
(nu11) | (nul1)

This is particularly useful for joins.

29/41

Ordering of NULLs

WITH ordertest AS (
SELECT NULL
UNION ALL
SELECT 2
UNION ALL
SELECT 1
UNION ALL
SELECT NULL

)

SELECT * FROM ordertest

ORDER BY 1;

?2column?

(nul1)
(nu11)

NULLs are treated as equal for ordering purposes.
30/41

Ordering NULLs First

WITH ordertest AS (
SELECT NULL
UNION ALL
SELECT 2
UNION ALL
SELECT 1
UNION ALL
SELECT NULL

)

SELECT * FROM ordertest

ORDER BY 1 NULLS FIRST;

?column?

31/41

Unique Indexes Treat NULLs as Unequal

CREATE TABLE uniqgtest (x INTEGER);
CREATE UNIQUE INDEX i unigtest ON unigtest (x)3
INSERT INTO unigtest VALUES (1), (NULL), (NULL);

SELECT * FROM uniqtest;

32/41

NULLs and Aggregates

CREATE TABLE aggtest (x INTEGER);
INSERT INTO aggtest VALUES (7), (8), (NULL);

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x)
FROM aggtest;

count | count | sum | min | max | avg

——————— et i e S T T

3 2| 15| 7] 8] 7.5000000000000000
DELETE FROM aggtest;

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x) FROM aggtest;
count | count | sum | min | max | avg
——————— B ettt L e s e

0| 0 | (null) | (nul1) | (null) | (null)

The sum of zero rows is NULL.

33/41

NULLs and GROUP By

DELETE FROM aggtest;
INSERT INTO aggtest VALUES (7), (8), (NULL), (NULL);

SELECT x, COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x)
FROM aggtest

GROUP BY x
ORDER BY x;
X | count | count | sum | min | max | avg
........ S
7| 1| 1] 7 | 7| 7 | 7.0000000000000000
8 | 1| 1] 8 | 8 | 8 | 8.0000000000000000
(nu11) | 2| 0 | (null) | (null) | (null) | (nulT)

34/41

Mapping NULLs to Strings

SELECT COALESCE(NULL, 0);
coalesce

SELECT COALESCE(NULL, 'I am null.');
coalesce

I am null.
INSERT INTO nullmaptest VALUES ('f'), ('g'), (NULL);

SELECT x, COALESCE(x, 'n/a') FROM nullmaptest;
X | coalesce
________ U,

f | f
g |9
(null) | n/a

SELECT 'a' || COALESCE(NULL, '') || 'b';
?column?

SELECT SUM(x), COALESCE(SUM(x), 0) FROM aggtest;
sum | coalesce
-------- et

(nu11) | 0

Mapping Strings to NULLs

DELETE FROM nullmaptest;

INSERT INTO nullmaptest VALUES ('f'), ('g'), ('n/a');

SELECT x, NULLIF(x, 'n/a') FROM nullmaptest;
x | nullif

nullif

36

41

NULLs In Row Expressions

SELECT NULL::INTEGER[] IS NULL;
?column?

SELECT '{}"'::INTEGER[] IS NULL;
?column?

SELECT '{NULL}"'::INTEGER[] IS NULL;
?column?

37/41

Row Expressions With NULLs

SELECT ROW() IS NULL;
?2column?

SELECT ROW(NULL) IS NULL;
?2column?

SELECT ROW(NULL,NULL) IS NULL;
?2column?

SELECT ROW(NULL,1) IS NULL;
?2column?

SELECT ROW(NULL,1) IS NOT NULL;
?2column?

38/41

Queries Returning NULLs in the Target List

CREATE TABLE emptytest (x INTEGER);

SELECT * from emptytest;
X

SELECT (SELECT * from emptytest);

SELECT (SELECT * from emptytest) IS NULL;
?column?

A SELECT with no FROM clause is assumed to return one row.

39/41

I Think I Get It!

"Oh, that makes sense" — When you see individual behaviors of null,
they look systematic, and your brain quickly sees a pattern and
extrapolates what might happen in other situations. Often, that
extrapolation is wrong, because null semantics are a mix of behaviors. I
think the best way to think about null is as a Frankenstein monster of
several philosophies and systems stitched together by a series of special
cases.

Jeff Davis

10

11

Conclusion

The presentation blog posts are at http://momjian.us/main/
blogs/pgblog/2013.html#January 23 2013.

ht tp / / mom] ian. MS/ presen tations https://www.flickr.com/photos/micspecial/inglefttosay/

41/41

 http://momjian.us/main/blogs/pgblog/2013.html#January_23_2013
 http://momjian.us/main/blogs/pgblog/2013.html#January_23_2013

