
NULLs Make Things Easier?

BRUCE MOMJIAN

Nulls are a very useful but also very error-prone relational
database feature. This talk is designed to help applications
developers better manage their use of nulls.
Creative Commons Attribution License http://momjian.us/presentations

Last updated: July, 2018

1 / 41

Nulls in English

Null means “nothing”.

2 / 41

Nulls In Computer Languages

C-based languages use a NULL pointer to indicate a pointer that
does not point to a value. Languages that don’t use pointers
often use an “undefined” value for a similar purpose.

3 / 41

Nulls in Data

What do you place in a field that has no value?
For strings, a zero-length string is reasonable.
What about numerics? -1, -99, 0?
What about dates? 1900-01-01?

4 / 41

Why Use NULLs

The three meanings of NULL:

◮ Unknown values

◮ Inapplicable values

◮ Empty placeholders

5 / 41

The NULL Spouse Example

If employee.spouse is NULL, does it mean?

◮ The spouse’s name is unknown.

◮ The employee is not married and therefore has no spouse.

◮ The employee.spouse column was an unjoined column from an
outer join.

6 / 41

NULLs Can Cause Their Own Problems

Don’t use NULLs in inappropriate situations. https://www.flickr.com/photos/randar/

7 / 41

Warning!

In their book A Guide to Sybase and SQL Server, David
McGoveran and C. J. Date said:

It is this writer’s opinion than NULLs, at least as currently
defined and implemented in SQL, are far more trouble than
they are worth and should be avoided; they display very strange
and inconsistent behavior and can be a rich source of error and
confusion. (Please note that these comments and criticisms
apply to any system that supports SQL-style NULLs, not just
to SQL Server specifically.)"
…
In the rest of this book, I will be urging you not to use them,
which may seem contradictory, but it is not. Think of a NULL
as a drug; use it properly and it works for you, but abuse it and
it can ruin everything. Your best policy is to avoid NULLs
when you can and use them properly when you have to.

Joe Celko, SQL for Smarties: Advanced SQL Programming
8 / 41

Keep Your Eye on the Red (Text)

https://www.flickr.com/photos/alltheaces/

9 / 41

Explicit NULLs

test=> SELECT NULL;
?column?

test=> \pset null (null)

test=> SELECT NULL;
?column?

(null)

10 / 41

Explicitly NULL Assignment

CREATE TABLE nulltest (x INTEGER, y INTEGER);

INSERT INTO nulltest VALUES (1, NULL);

SELECT * FROM nulltest;
x | y
---+--------
1 | (null)

11 / 41

Implicit NULL Assignment

INSERT INTO nulltest (x) VALUES (2);

SELECT * FROM nulltest;
x | y
---+--------
1 | (null)
2 | (null)

12 / 41

NULL Storage Can Be Prevented

CREATE TABLE nulltest2 (x INTEGER NOT NULL, y INTEGER NOT NULL);

INSERT INTO nulltest2 VALUES (3, NULL);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (3, null).

INSERT INTO nulltest2 (x) VALUES (4);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (4, null).

13 / 41

The Non-Value of NULLs

SELECT NULL + 1;
?column?

(null)

SELECT NULL || ’a’;
?column?

(null)

SELECT ’b’ || NULL;
?column?

(null)

14 / 41

NULL Is Unknown?

CREATE TABLE inctest (x INTEGER);

INSERT INTO inctest VALUES (30), (40), (NULL);

SELECT x + 1 FROM inctest;
?column?

31
41

(null)

15 / 41

The Three-Valued Logic of NULLs

SELECT NULL = 1;
?column?

(null)

SELECT NULL = ’’;
?column?

(null)

SELECT NULL = NULL;
?column?

(null)

SELECT NULL < NULL + 1;
?column?

(null)

NULL represents unknown, not applicable, or unassigned. It has
no data type, so comparing it to fixed values always returns NULL.

16 / 41

NULL Query Comparisons

SELECT 1
WHERE true;
?column?

1

SELECT 1
WHERE false;
?column?

SELECT 1
WHERE NULL;
?column?

WHERE only returns rows whose result is true, not false or NULL.
17 / 41

NULL Is Not False

SELECT true AND NULL;
?column?

(null)

SELECT NOT NULL;
?column?

(null)

18 / 41

NULL Operator Comparisons

SELECT * FROM inctest;
x

30
40

(null)

SELECT * FROM inctest WHERE x >= 0;
x

30
40

SELECT * FROM inctest WHERE x < 0;
x
—

SELECT * FROM inctest WHERE x < 0 OR x >= 0;
x

30
40

19 / 41

NULL And Not Equals

SELECT * FROM inctest WHERE x <> 10;
x

30
40

SELECT * FROM inctest WHERE x <> 10 OR x = 10;
x

30
40

20 / 41

NULLs And NOT IN

SELECT 1 <> 2 AND 1 <> 3;
?column?

t

SELECT 1 <> 2 AND 1 <> 3 AND 1 <> NULL;
?column?

(null)

21 / 41

Subqueries With NULL

SELECT ’a’ IN (SELECT NULL::text);
?column?

(null)

SELECT ’a’ NOT IN (SELECT NULL::text);
?column?

(null)

22 / 41

Multi-Row Subqueries

SELECT ’a’ IN (SELECT ’a’ UNION ALL SELECT NULL);
?column?

t

SELECT ’a’ NOT IN (SELECT ’a’ UNION ALL SELECT NULL);
?column?

f

SELECT ’a’ IN (SELECT ’b’ UNION ALL SELECT NULL);
?column?

(null)

SELECT ’a’ NOT IN (SELECT ’b’ UNION ALL SELECT NULL);
?column?

(null)

23 / 41

IN Queries Expanded

SELECT ’a’ = ’b’ OR ’a’ = NULL;
?column?

(null)

SELECT ’a’ <> ’b’ AND ’a’ <> NULL;
?column?

(null)

NOT IN subqueries returning NULLs are often problematic.

24 / 41

Explicit NULL Comparison

SELECT NULL = NULL;
?column?

(null)

SELECT NULL IS NULL;
?column?

t

SELECT NULL IS NOT NULL;
?column?

f

25 / 41

Explicit NULL Comparison

SELECT * FROM inctest;
x

30
40

(null)

SELECT * FROM inctest WHERE x IS NULL;
x

(null)

SELECT * FROM inctest WHERE x IS NOT NULL;
x

30
40

26 / 41

Comparing NULLs With True/False Logic

SELECT 2 IS DISTINCT FROM 1;
?column?

t

SELECT NULL IS DISTINCT FROM 1;
?column?

t

SELECT NULL IS DISTINCT FROM NULL;
?column?

f

SELECT NULL <> 1;
?column?

(null)

27 / 41

Explicit Equality Comparisons With NULL

SELECT * FROM inctest WHERE x IS DISTINCT FROM 30;
x

40
(null)

SELECT * FROM inctest WHERE x IS NOT DISTINCT FROM 30;
x

30

28 / 41

Comparing NULLs to Other NULLs

CREATE TABLE disttest (x INTEGER, y INTEGER);

INSERT INTO disttest VALUES (1, 1), (2, 3), (NULL, NULL);

SELECT * FROM disttest where x IS NOT DISTINCT FROM y;
x | y

--------+--------
1 | 1

(null) | (null)

This is particularly useful for joins.

29 / 41

Ordering of NULLs

WITH ordertest AS (
SELECT NULL
UNION ALL
SELECT 2
UNION ALL
SELECT 1
UNION ALL
SELECT NULL

)
SELECT * FROM ordertest
ORDER BY 1;
?column?

1
2

(null)
(null)

NULLs are treated as equal for ordering purposes.
30 / 41

Ordering NULLs First

WITH ordertest AS (
SELECT NULL
UNION ALL
SELECT 2
UNION ALL
SELECT 1
UNION ALL
SELECT NULL

)
SELECT * FROM ordertest
ORDER BY 1 NULLS FIRST;
?column?

(null)
(null)

1
2

31 / 41

Unique Indexes Treat NULLs as Unequal

CREATE TABLE uniqtest (x INTEGER);

CREATE UNIQUE INDEX i_uniqtest ON uniqtest (x);

INSERT INTO uniqtest VALUES (1), (NULL), (NULL);

SELECT * FROM uniqtest;
x

1

(null)
(null)

32 / 41

NULLs and Aggregates

CREATE TABLE aggtest (x INTEGER);

INSERT INTO aggtest VALUES (7), (8), (NULL);

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x)
FROM aggtest;
count | count | sum | min | max | avg
-------+-------+-----+-----+-----+--------------------

3 | 2 | 15 | 7 | 8 | 7.5000000000000000

DELETE FROM aggtest;

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x) FROM aggtest;
count | count | sum | min | max | avg
-------+-------+--------+--------+--------+--------

0 | 0 | (null) | (null) | (null) | (null)

The sum of zero rows is NULL.

33 / 41

NULLs and GROUP BY

DELETE FROM aggtest;

INSERT INTO aggtest VALUES (7), (8), (NULL), (NULL);

SELECT x, COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x)
FROM aggtest
GROUP BY x
ORDER BY x;

x | count | count | sum | min | max | avg
--------+-------+-------+--------+--------+--------+--------------------

7 | 1 | 1 | 7 | 7 | 7 | 7.0000000000000000
8 | 1 | 1 | 8 | 8 | 8 | 8.0000000000000000

(null) | 2 | 0 | (null) | (null) | (null) | (null)

34 / 41

Mapping NULLs to Strings

SELECT COALESCE(NULL, 0);
coalesce

0

SELECT COALESCE(NULL, ’I am null.’);
coalesce

I am null.

INSERT INTO nullmaptest VALUES (’f’), (’g’), (NULL);

SELECT x, COALESCE(x, ’n/a’) FROM nullmaptest;
x | coalesce

--------+----------
f | f
g | g
(null) | n/a

SELECT ’a’ || COALESCE(NULL, ’’) || ’b’;
?column?

ab

SELECT SUM(x), COALESCE(SUM(x), 0) FROM aggtest;
sum | coalesce

--------+----------
(null) | 0

35 / 41

Mapping Strings to NULLs

DELETE FROM nullmaptest;

INSERT INTO nullmaptest VALUES (’f’), (’g’), (’n/a’);

SELECT x, NULLIF(x, ’n/a’) FROM nullmaptest;
x | nullif

-----+--------
f | f
g | g
n/a | (null)

SELECT NULLIF(’n/a’, COALESCE(NULL, ’n/a’));
nullif

(null)

36 / 41

NULLs In Row Expressions

SELECT NULL::INTEGER[] IS NULL;
?column?

t

SELECT ’{}’::INTEGER[] IS NULL;
?column?

f

SELECT ’{NULL}’::INTEGER[] IS NULL;
?column?

f

37 / 41

Row Expressions With NULLs

SELECT ROW() IS NULL;
?column?

t

SELECT ROW(NULL) IS NULL;
?column?

t

SELECT ROW(NULL,NULL) IS NULL;
?column?

t

SELECT ROW(NULL,1) IS NULL;
?column?

f

SELECT ROW(NULL,1) IS NOT NULL;
?column?

f

38 / 41

Queries Returning NULLs in the Target List

CREATE TABLE emptytest (x INTEGER);

SELECT * from emptytest;
x

SELECT (SELECT * from emptytest);
x

(null)

SELECT (SELECT * from emptytest) IS NULL;
?column?

t

A SELECT with no FROM clause is assumed to return one row.

39 / 41

I Think I Get It!

"Oh, that makes sense" — When you see individual behaviors of null,
they look systematic, and your brain quickly sees a pattern and
extrapolates what might happen in other situations. Often, that
extrapolation is wrong, because null semantics are a mix of behaviors. I
think the best way to think about null is as a Frankenstein monster of
several philosophies and systems stitched together by a series of special
cases.

Jeff Davis

40 / 41

Conclusion

The presentation blog posts are at http://momjian.us/main/
blogs/pgblog/2013.html#January_23_2013.
http://momjian.us/presentations https://www.flickr.com/photos/micspecial/inglefttosay/

41 / 41

 http://momjian.us/main/blogs/pgblog/2013.html#January_23_2013
 http://momjian.us/main/blogs/pgblog/2013.html#January_23_2013

