Database servers have hardware requirements different from other infrastructure software, specifically unique demands on I/O and memory. This presentation covers these differences and various I/O options and their benefits.

Creative Commons Attribution License http://momjian.us/presentations

Last updated: February, 2020
Outline

- CPU
- Multi-threading
- GHz
- Pipelining
- SMP
- NUMA
Nope!

- CPU
- Multi-threading
- GHz
- Pipelining
- SMP
- NUMA
Normal Server Priorities

CPU

Memory

I/O
Database Server Priorities

- I/O
- Memory
- CPU
Why the Difference?

Traditional servers are often CPU constrained because of:

- Network overhead (http)
- Text processing (email)
- Virtual machines (application servers)
- Application code
Database Server’s Unique Requirements

- Sequential scans of large tables
- Index scans causing random I/O
- Unpredictable query requirements
- Reporting

These do not require major CPU resources.
Durability Adds Even More I/O Requirements

ACID (D = durability) requires committed transactions to be stored permanently. Few other server facilities must honor this requirement.
Magnetic Disk I/O Stack With BBU

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Cache
- Magnetic Disk

- Write-Ahead Log
 - fsync
- Battery
- fsync (write-back)
Flash / NAND Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- Disk Staging Cache
- Flash (NAND) Solid State Disk (SSD)

Flow:
- fsync from Write-Ahead Log to Kernel Disk Buffer Cache
- fsync from Kernel Disk Buffer Cache to HBA/RAID Cache
- write-back from HBA/RAID Cache to Disk Staging Cache
- fsync from Disk Staging Cache to Flash (NAND) SSD
DRAM Storage I/O Stack

- PostgreSQL Shared Buffer Cache
- Kernel Disk Buffer Cache
- HBA/RAID Cache
- DRAM Solid State Disk (SSD)
- Write-Ahead Log

fsync
Write-Back vs. Write-Through Caching

- Write-back caching returns write success before passing data to lower storage layers
- Write-through caching waits for write acknowledgement from lower storage layers before returning success
HBA/RAID cache behavior is usually controlled by the HBA/RAID firmware, often conditionally based on the health of the BBU.

Storage drive cache behavior can be set by utility commands or by using certain operating system calls.

Enterprise/SAS storage devices usually default to write-through, while consumer/SATA devices usually default to write-back.
HBA/Raid Caching

- HBA/Raid controllers often set storage drive caching mode to write-through
- With an HBA/Raid non-volatile cache, there is little advantage to using write-back mode on storage drives
Magnetic Disk Selection

- More small spindles is better than fewer large spindles
- RAID 5/6 is too slow for database writes
- RAID 10 is popular
- make sure SMART reporting is fully supported
- SAS/SCSI disks are usually designed for enterprise workloads, unlike SATA/ATA
 - reliability
 - error reporting
 - 24-hour operation
 - heat
 - vibration
SSDs

- Flash/NAND vs. DRAM
- Write staging area — it is not just cache
- Running a NAND SSD in write-through mode can reduce its usable life because of increased write cycles
- Best for WAL and random I/O, e.g., indexes
- Set `random_page_cost = 1.1`
- Set `effective_io_concurrency = 256`
Filesystem Options

- xfs or ext4 over ext3
- reduce file system logging, particularly for /pg_wal directory
- disable access (atime) recording
Battery-Backed Unit (BBU)

- Verify battery or super-capacitor (supercap) existence visually
- Typically lasts for 48-72 hours
- Some write the cache to local flash memory on power failure
- Detected battery/super-capacitor failure can disable write-back cache mode
- Requires failure monitoring
- Requires replacement
Battery-Backed Unit (BBU)

https://www.flickr.com/photos/jemimus/
Supercapacitor-Backed Unit

https://commons.wikimedia.org/wiki/File:Embedded_World_2014_SSD.jpg
Shared Storage

- SAN and NAS replace direct-attached storage (DAS) with shared storage
- Often used for easier storage management
- Shared I/O resource
- Databases often wait for I/O completion, meaning they have to contend with shared resource contention
- SAN serves block devices, NAS serves file systems
The more RAM, the better; this reduces I/O requirements.

Ideally, five minutes of your working set.

The more RAM, the more possibility of RAM failure.

Use ECC (Error Correction Codes) RAM:
 - detect errors
 - correct errors
 - report faulty memory
 - cosmic radiation
Parallel query allows a single session to use multiple CPUs
 - Partial support added in Postgres 9.6
Heavy use of server-side functions might generate significant CPU load
CPUs can become a bottleneck if the entire database fits in RAM and the workload is read-only
Not the Same

Just because something has the same interface doesn’t mean has the same capabilities. Compatible computer hardware is not all the same.

https://www.flickr.com/photos/cdevers/